
§1 CTAN˙CHK GAWK PROGRAM CTAN CHK .GAWK 1

1. Gawk program ctan chk .gawk .
Basic Gawk program that uses Ctan’s published guidelines for authors to help eliminate slopiness in uploaded
files/project. It is completely open for users to program additional guidelines and Ctan’s future adjustments.
The program came about when I first attempted to upload “Yacco2” for Ctan consideration. As Yacco2 was
quite large, it took me 3 attempts to clean up my project. Depending on how u develop your project, in my
case the Yacco2 project for Ctan upload is a subset of the complete system and so each uplift required the
guideline assessment/purging process.

This is my attempt to help both the author in getting the new system in shape for Ctan uplift and to
lower the Ctan volanteers interaction to aid for publishing on their servers. It is my thank you to these
volanteers / Ctan.

This gawk program verifies whether an upload project for CTAN follows its published guidelines on their
website:

http://ctan.org/upload/

Here is the link to the awk/gawk reference manual for people needing a refresher to its programming state-
ments:

https://www.gnu.org/software/gawk/manual/gawk.html#Reading-Files

2 LICENSE CTAN˙CHK §2

2. License.
ctan chk’s distributed source code is subject to the terms of the GNU General Public License (version 3). If a
copy of the MPL was not distributed with this file, you can obtain one at https://gnu.org/licenses/gpl.html.

Project: ctan guidelines verifier and corrector program for uploading projects
Distributed under license: GNU General Public License (version 3).
Distribution Date: February 15, 2015
Distribution version: 1.0
Comments: Currently for the Unix flavoured Platforms running Gawk
Author: Dave Bone

Contributors list:
Dave Bone

3. Ctan chk reference.
Unzip the ctan chk .zip file. Please read ctan chk .pdf document. It instructs one in “how to” use the gawk
ctan chk .gawk program.

4. Literate Programming genre.
ctan chk .pdf user manual and ctan chk .gawk program are generated by the Cweb system’s cweave and
ctangle programs along with the pdftex. The ctan chk bash script does it all for u; have a read it doesn’t
bite. Please consider using Cweb and joining “www.tug.org” where u’ll find the Cweb system.

§5 CTAN˙CHK COMMENTS ON PROGRAM’S FUNCTIONS 3

5. Comments on program’s functions.
Normally u edit the ctan chk .gawk file (using gawk comments) as to what ”verification function” is called
to check out your project’s files. Here is a list of the verification functions to call:
Helper functions:

is file a directory — is file a directory type rather than a data type?
is file an executable — Maybe too platform dependent: is it an executable

Verification functions:
chk auxiliary files — files that should be removed / deleted
chk file permissions — file execute permissions check
chk extended file attributes — does file have extended attribute like @
chk empty files — zero byte size file?
chk empty directory — empty folder
chk file to bypass in zip — file to bypass by zip using its -x option

Correction functions:
remove file s execute attribute — Read “Remove file’s execute attribute” section for details
delete file — interacts with user. Used by itself or from other functions like chk auxiliary files
remove file s extended attributes — Remove extended attribute from file (platform dependent)

4 RUNNING GAWK PROGRAM HAS 2 RUN/PASS ATTITUDE CTAN˙CHK §6

6. Running Gawk program has 2 run/pass attitude.
U run this program twice with appropriate editing sessions inbetween the run passes:

run Pass 1 function where your edited functions to call and capturing output with tee utility
⇒ pass 1’s input file is an absolute pathed files list. See How tousethisgawk program section
⇒ assess the messages outputted as to what guidelines need to be corrected
⇒ outputted messages have 2 parts: part 1 the filename and part 2 the quoted message

run Pass 2 function where u comment out pass 1 call and uncomment pass 2 function call
⇒ inside the pass2 correct function, uncomment the appropriate correction function to call
⇒ the captured messages from tee of pass 1 is its inputted file
⇒ in awk/gawk terms this gawk ’s record is composed of fields where the field separator is space
⇒ so the 2nd pass receives the 2 fields filename, and message

Output example of guideline violations from Pass 1:
⇒ ”/yacco2/.DS Store” ’Extended attributes -rwxr-xr-x@’
⇒ ”/yacco2/.DS Store” ’Write permissions -rwxr-xr-x@ to possibly delete file type: data’
⇒ ”/yacco2/.DS Store” ’Bypass file in zip’
⇒ ”/yacco2/.gitignore” ’Auxilary file to be deleted’
⇒ ”/yacco2/.nbattrs” ’Extended attributes -rwxr-xr-x+’
⇒ ”/yacco2/.nbattrs” ’Write permissions -rwxr-xr-x+ to possibly delete file type: XML’
⇒ ”/yacco2/.nbattrs” ’Bypass file in zip’
⇒ ”/yacco2/bin/.DS Store” ’Extended attributes -rwxr-xr-x@’
⇒ ”/yacco2/bin/.DS Store” ’Write permissions -rwxr-xr-x@ to possibly delete file type: data’
⇒ ”/yacco2/bin/.DS Store” ’Bypass file in zip’
⇒ ”/yacco2/bin/man/man1/1lrerrors.log” ’Auxilary file to be deleted’
⇒ ”/yacco2/bin/man/man1/1lrerrors.log” ’Empty file to be deleted’
⇒ ”/yacco2/bin/man/man1/1lrtracings.log” ’Auxilary file to be deleted’
⇒ ”/yacco2/bin/man/man1/1lrtracings.log” ’Empty file to be deleted’
⇒ ”/yacco2/bin/man/man1/o2.man” ’Extended attributes -rw-r–r–@’
⇒ ”/yacco2/bin/man/man1/o2linker.man” ’Extended attributes -rw-r–r–@’
⇒ ”/yacco2/bin/man/man1/yacco2.man” ’Extended attributes -rw-r–r–@’
⇒ ”/yacco2/bin/man/man1/yacco2cmd.tmp” ’Auxilary file to be deleted’
⇒ ”/yacco2/bin/man/man1/yacco2cmd.tmp” ’Empty file to be deleted’
⇒ ”/yacco2/bld bash APPLE” ’Extended attributes -rwxr-xr-x@’
⇒ ”/yacco2/bld bash APPLE” ’Write permissions -rwxr-xr-x@ to possibly delete file type: ASCII’
⇒ ”/yacco2/book/appendix a.aux” ’Auxilary file to be deleted’
⇒ ”/yacco2/book/ch fsm.tex” ’Write permissions -rwxr-xr-x@ to possibly delete file type: LaTeX’

Running the initial program could potentially output the above sampling. If there are just 1 message
type outputted then u would just focus on “pass 2” to correct it. Having a mix of messages means “pass 1”
should be edited to just deal with the 1 message type at a time. This allows the homogenous output to be
captured and edit the removal of files to bypass. Now the program can be edited to support the message
type action correcting the violation and rerun. Each listed guideline type would go thru this edit behaviour:
“pass 1” to see the violations, analyse its outcome, re-edit program, and then run the correction.

7. Anatomy of this gawk program.
It contains 3 gawk actions: BEGIN, Body, and END. This program’s BEGIN and END actions are just read
record stats. U can add your own code as this program is open to your creativity. The action Body contains
the 2 passes: pass1 guidelines verify and pass2 correct . To comment out a function call, add a # at the
beginning of its line. To activate a commented out function call, just remove its gawk ’s comment character:
.

§8 CTAN˙CHK HOW TO GENERATE THE PDF DOCUMENT AND THIS GAWK PROGRAM 5

8. How to generate the pdf document and this gawk program.
The Cweb “literate programming” framework is used to generate its pdf document and its gawk program
from ctan chk .w. Though Cweb emits a “c” type code, gawk code is very similar to “c”.
0) Run from a terminal using bash.

. ctan chk bash
⇒ The various utilities used are outputed on the terminal

U are open to add your own code to the ctan chk .w program and rerun the above script. If u do not have
the Cweb framework installed, u can add the code to the ctan chk .gawk file.

9. How to use this gawk program.
0) Run from a terminal using bash.
1) Generate a file containing your project’s files whose path is absolute

find /absolute path of your project > xxx
⇒ xxx is a holding file containing your project’s files
⇒ example of an absolute path: /usr/local/yacco2

2) Edit ctan chk .gawk to what function calls u want to use inside pass1 guidelines verify
3) Run gawk ctan chk program verifying your project

gawk -f ctan chk.gawk xxx # xxx is the file read containing the files to assess
⇒ it outputs files to correct on the terminal with appropriate guideline message
⇒ no outputted messages means your project passed with flying colours :}

⇒ To capture the verification output:
gawk -f ctan chk.gawk xxx|tee yyy
⇒ Use of tee utility to capture the output into yyy file

6 EXAMPLE: CHECKING AUXILARY FILES TO DELETE CTAN˙CHK §10

10. Example: Checking auxilary files to delete.
Here are the steps to see whether there are files to remove/delete. File xxx contains the files to verify as
exampled earlier in this document.
1) gawk -f ctan chk.gawk xxx

2) Its output should have messages similar to this:
⇒ ”/yacco2/bin/man/man1/1lrerrors.log” ’Auxilary file to be deleted’

3) Rerun gawk -f ctan chk.gawk xxx|tee yyy where the output messages are put in yyy file.

4) Edit: comment out pass1 guidelines verify and uncomment #pass2 correct in Body action code:
The gened ctan chk .gawk program could have different commented “section no:” used in the below edit
session. What is important are function names referenced: for example, pass1 guidelines verify which you’ll
find in your ctan chk .gawk program. Same comments apply against the other pieces of code being edited.

section no:22*/
section no28:*/
{
pass1 guidelines verify($1);
#pass2 correct($1,$2);
}

to
section no:22*/
section no28:*/
{
#pass1 guidelines verify($1);
pass2 correct($1,$2);
}

5) Edit: uncomment out #delete file in pass2 correct:
section no:28*/
section no29:*/
function pass2 correct(filename,message)
{
#remove file s execute attribute(filename,message);
#remove file s extended attributes(filename,message);
#delete file(filename);
}

to
section no:28*/
section no29:*/
function pass2 correct(filename,message)
{
#remove file s execute attribute(filename,message);
#remove file s extended attributes(filename,message);
delete file(filename);
}

§10 CTAN˙CHK EXAMPLE: CHECKING AUXILARY FILES TO DELETE 7

6) Save edited ctan chk .gawk program and rerun with yyy:
⇒ gawk -f ctan chk.gawk yyy

Each file being deleted is questioned and allows u to bypass it.
This is due to the -i option used in rm -i file-to-delete

Other guideline contraints would follow the same run / edit / rerun template above adjusting the pro-
gram accordingly.

⇒ Just remember to reset the program back to its initial setting.
As an aside comment, u could have uncommented the delete file call inside the chk auxiliary files function
and do the correction while in the “assess guideline” pass. So why did u not express this before :{? Well the
normal correction pattern is see what guidelines are violated by “pass 1’, edit the program, and then rerun
against “pass 2” correction. Once u are familiar with the program throw out my patterns and jig your own
:}.

8 FUNCTION CODE SECTIONS CTAN˙CHK §11

11. Function code sections.

12. ctan gawk’s comments — author, license etc.

〈Emit gawk comments 12 〉 ≡
#
Program : ctan chk .gawk
#
Author : DaveBone
#
License :
This SourceCodeFormis subject tothe terms of theGNUGeneral PublicLicense (version3) .
If acopy of theMPLwas¬distributed withthisfile ,
You can obtain oneat : "https://gnu.org/licenses/gpl.html" .
#
Purpose : Implementation of somesuggestedCTANguidelines that an upload project should respect .
Correction functions helpucleanupthedroppings .
Seewww .ctan .org website for "upload guideline" document
Read ctan chk .pdf document describing theprogram with various run scenarios .
#
#

This code is used in section 34.

§13 CTAN˙CHK HELPER FUNCTIONS 9

13. Helper functions.

14. Is file a directory.
Directory found returns 1.

〈 is file a directory 14 〉 ≡
function is file a directory (filename ,filetype)
{
x = "file \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
split (a, parts);
filetype [1] = parts [2];
xx = parts [2];
str = "^directory$";
if (xx∼str) {

return 1;
}
return 0;
}

This code is used in section 34.

15. Is file an executable.
This function might be too platform dependent.
If so then don’t call it or find an alternative.
A return 1 means it’s an executable.

〈 is file an executable 15 〉 ≡
function is file an executable (filename ,filetype)
{
x = "file %s";
y = sprintf (x,filename);
y | getlinea;
close (y);
split (a, parts);
filetype [1] = parts [2];
xx = parts [2];
str = "(executable|POSIX|Mach−O|ELF)$";
if (xx∼str) {

return 1;
}
return 0;
}

This code is used in section 34.

10 GUIDELINE ASSESSMENT FUNCTIONS CTAN˙CHK §16

16. Guideline assessment functions.

17. Check for auxiliary type files.
“str” contains a regular expression of file extensions to search for starting with a “.” followed by the round
bracket expression of extensions to search on ending by the end-of-string regular expression indicator: $.
Inside the rounded bracket expression is the choice of extensions separated by | which is the “or” operator
of a regular expression.

The double \ in str is due to how gawk parses the program code: it does a double pass:
1) on the string: str
2) on the regular expression called

Just having a “.” at the start of regular expression means it is a single “wild character” to accept. To accept
a period “.” that starts the file extension, u have to escape it. Pass 1 for the literal string is the first escape
sequence on \ the 2nd backslash. In pass 2 for the regular expession called, the \ escapes the “.” to not
interpret as the regular expression wild character.

str can be added to. Make sure u include the added extension started with the | when appended to
before the closing off rounded bracked “)”.

chk auxiliary files outputs a 2 part message: file name and message it considers as an auxiliary file to
be deleted. Calling delete file interacts with the user whether to delete it or not. It is commented
out so that the messages can saved and reviewed before the correction pass takes place: See Pass2−− −
correct violated guidelines section providing more information. U can uncomment the delete file statement
below if u prefer to delete the file in the assessment pass rather than the correction pass. Your call and
temperment.

〈 chk auxiliary files 17 〉 ≡
function chk auxiliary files (filename)
{

if (is file a directory (filename) ≡ 1) return 0;
str = "\\.(ps|gitignore|git|aux|log|bbl|bcf|blg|brf|ilg|ind|idx|glo|loa|lof|lot|nav|ou\

t|snm|vrb|toc|dvi|glg|gls|tmp|o|bak|mpx|scn|toc)$";
if (filename∼str) {

a = "\"%s\" ’Auxilary file to be deleted’";
b = sprintf (a,filename);
print b;
#delete file (filename);
return 1;

}
return 0;
}

This code is used in section 34.

§18 CTAN˙CHK CHECK FOR EXTENDED ATTRIBUTES 11

18. Check for extended attributes.
Basicly looks at the output from the “ls -al” of a file. If there are extended attributes it will be displayed at
the end of the first field as “@” or “+”. It outputs the filename and message to the terminal. Return 1 if
found.

〈 chk extended file attributes 18 〉 ≡
function chk extended file attributes (filename)
{
x = "ls −al \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
number of fields = split (a, parts);
if (number of fields < 9) return 0;
xx = parts [1];
str = "(@|+)$";
if (xx¬∼str) {

return 0;
}
a = "\"%s\" ’Extended attributes %s’";
b = sprintf (a,filename , parts [1]);
print b;
#remove file s extended attributes (filename , b);
return 1;
}

This code is used in section 34.

12 CHECK FOR EMPTY FILES CTAN˙CHK §19

19. Check for empty files.
Uncomment out the delete file statement below if u want to remove it in the assessment phase. Asks whether
to delete the zero sized file and returns 1.

〈 chk empty files 19 〉 ≡
function chk empty files (filename)
{

if (is file a directory (filename) ≡ 1) return 0;
x = "ls −al \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
number of fields = split (a, parts);
if (number of fields < 9) {

print"ERROR ===> ls −al should be 9 fields an\
d it isn’t: "a" no fields: "number of fields ;

return 0;
}
i = strtonum (parts [5]);
if (i > 0) {

return 0;
}
a = "\"%s\" ’Empty file to be deleted’";
b = sprintf (a,filename);
print b;
#delete file (filename);
return 1;
}

This code is used in section 34.

§20 CTAN˙CHK CHECK FOR EMPTY DIRECTORY 13

20. Check for empty directory.
Empty directory found returns a 1.
This check requires u to assess what u want to do: delete it, or add an “info.txt” file inside it. For example in
the “Yacco2” project, it is a full development framework of a compiler/compile, and its API library. It has
empty Debug folders. Its Release folders contained content. Depending on what the user wanted to debug
and link against, the empty Debug folder provided consistency to the framework and hence it was needed.
So an “info.txt” file was created inside each Debug folder expressing their intent/use to the developer.

〈 chk empty directory 20 〉 ≡
function chk empty directory (filename)
{

if (is file a directory (filename) ≡ 0) return 0;
x = "du −sk \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
number of fields = split (a, parts);
i = strtonum (parts [1]);
if (i > 0) return 0;
a = "\"%s\" ’Empty directory to be deleted or needs to add info.txt file inside it’";
b = sprintf (a,filename);
print b;
return 1;
}

This code is used in section 34.

21. Check file permissions.
Bypass a directory. If the file does not have an executable attribute then exit stage gracefully.

〈 chk file permissions 21 〉 ≡
function chk file permissions (filename)
{

filetype [1] = "";
if (is file a directory (filename ,filetype) ≡ 1) return 0;
if (is file an executable (filename ,filetype) ≡ 1) return 0;
x = "ls −al \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
number fields = split (a, parts);
str = "x";
if (parts [1]∼str) {

a = "\"%s\" ’Write permissions %s to possibly delete file type: %s’";
b = sprintf (a,filename , parts [1],filetype [1]);
print b;
return 1;
}
return 0;

}
This code is used in section 34.

14 CHECK FILE TO BYPASS IN ZIP CTAN˙CHK §22

22. Check file to bypass in zip.
This is just a check function that lists files to bypass in the zip file creation process.
An example of creating a zip file:

zip -r -ll yacco2.zip yacco2 -x ’*DS Store’ -x ’*.nbattrs’
⇒ -r recurse through the folder getting all its subfolders and their contents
⇒ -ll parameter reduces carriage return/line feed combo to line feed
⇒ -x parameter lists by regular expression the file(s) to bypass
⇒ The bypassed exampled files are Apple OSX specific

〈 chk file to bypass in zip 22 〉 ≡
function chk file to bypass in zip(filename)
{

str = ".(DS_Store|.nbattrs)$";
if (filename∼str) {

a = "\"%s\" ’Bypass file in zip’";
b = sprintf (a,filename);
print b;
return 1;

}
return 0;
}

This code is used in section 34.

§23 CTAN˙CHK CORRECT GUIDELINE VIOLATIONS 15

23. Correct guideline violations.

24. Remove file’s execute attribute.
Due to security reasons, u cannot have an indirect bash script run against a list of files to change their
ownership attributes. It will run but nothing will be changed.
So what to do?

⇒ gawk -f ctan chk .gawk xxx |tee yyy
⇒ u can use your own temporary file name instead of yyy
⇒ just remember to substitute your file name in place of yyy
⇒ where the chk file permissions function is the only function run
⇒ and the other functions have been commented out

Edit yyy file containing the list of potential files, removing files keeping their execute attribute.

Run this below gawk script interactively from your bash terminal
⇒ This means copy the below script line and paste it in the bash terminal

gawk ’{x=”chmod a-x %s;”;y=sprint(x,$1);system(y);}’ yyy

Some comments on the above interactive gawk program:
1) It reads the yyy file where each line read contains 2 fields: filename, and message separated by a space
2) It runs the chmod utility by the system statement
3) Not sure about chmod utility, do a “man chmod” on your bash terminal for more information
4) If u boobooed on a file and removed the execute attribute, here is a correction:

⇒ chmod a+x file-to-reimplement

〈 remove file s execute attribute 24 〉 ≡
function remove file s execute attribute (filename ,message)
{

print"Please read |ctan_chk.pdf| to find instructions on how remove execute attribute\
 from a file";

}

25. Remove file’s with extended attributes.
This function is platform dependent. The xattr is the utility to run on Apple’s OSx platform to remove the
extension.

〈 remove file s extended attributes 25 〉 ≡
function remove file s extended attributes (filename ,message)
{
x = "echo %s\";xattr −c %s";
y = sprintf (x,message ,filename);
printy;
#y | getlinea;
#close (y);
}

This code is used in section 34.

16 DELETE FILE CTAN˙CHK §26

26. Delete file.
The file name passed to it is displayed and asks whether it should be deleted.

〈 delete file 26 〉 ≡
function delete file (filename)
{
x = "rm −i \"%s\"";
y = sprintf (x,filename);
y | getlinea;
close (y);
}

This code is used in section 34.

§27 CTAN˙CHK PASS 1 / 2 GUIDELINES ASSESSMENT AND CORRECTION 17

27. Pass 1 / 2 guidelines assessment and correction.

28. Pass 1 — guidelines assessment.
Using a text editor (un)comment out the appropriate function calls in ctan chk .gawk that u’d like to
verify. For example checking just the files to be deleted, comment out all the below functions except
chk auxiliary files .

U can run pass 1 as is to see whether any of your files for upload do not pass the guidelines. From there
u can adjust what function to deal with by commenting out the others fuctions and teeing out its found
infidelities for pass 2 correction.

〈pass 1 guidelines verify 28 〉 ≡
function pass1 guidelines verify (filename)
{

chk auxiliary files (filename);
chk extended file attributes (filename);
chk empty files (filename);
chk empty directory (filename);
chk file permissions (filename);
chk file to bypass in zip(filename);
}

This code is used in section 34.

29. Pass 2 — correct violated guidelines.
There are 3 functions whereby 2 of them do usefull things.

delete file function asks whether its passed file should be deleted
⇒ Remove the -i in rm -i statement if u don’t want the interactive question

remove file s extended attributes function is tailored to the Apple platform
⇒ Other platforms should have an equivalent xattr -c utility
⇒ Caveat: know what utility to use and adjust accordingly to remove the extension attribute
⇒ Have a read at https://en.wikipedia.org/wiki/Extended file attributes#cite note-14

remove file s execute attribute tells u to read the ctan chk.pdf document
⇒ on “how to remove” the execute attribute from a file

Uncomment the appropriate below function to call. And comment out pass1 guidelines verify statement,
and uncomment pass2 correct statement in Body action before reruning this program.

〈pass 2 guidelines correction 29 〉 ≡
function pass2 correct (filename ,message)
{

#remove file s execute attribute (filename ,message);
#remove file s extended attributes (filename ,message);
#delete file (filename);
}

This code is used in section 34.

18 GAWK BEGIN, BODY, END ACTIONS CTAN˙CHK §30

30. Gawk Begin, Body, End actions.

31. Begin.

〈 BEGIN 31 〉 ≡
BEGIN

{
rec cnt = 0;
}

This code is used in section 34.

32. Body.

〈Body 32 〉 ≡
{

pass1 guidelines verify ($1);
#pass2 correct ($1, $2);
}

This code is used in section 34.

33. END.

〈 END 33 〉 ≡
END{

print"no records read: "NR;
}

This code is used in section 34.

34. Write out gawk program.

〈 ctan_chk.gawk 34 〉 ≡
〈Emit gawk comments 12 〉;
〈 is file a directory 14 〉;
〈 is file an executable 15 〉;
〈 chk auxiliary files 17 〉;
〈 remove file s extended attributes 25 〉;
〈 chk file permissions 21 〉;
〈 chk extended file attributes 18 〉;
〈 chk empty files 19 〉;
〈 chk empty directory 20 〉;
〈 delete file 26 〉;
〈 chk file to bypass in zip 22 〉;
〈pass 1 guidelines verify 28 〉;
〈pass 2 guidelines correction 29 〉;
〈 BEGIN 31 〉;
〈Body 32 〉;
〈 END 33 〉;

§35 CTAN˙CHK INDEX 19

35. Index.

$1: 32.
$2: 32.
an : 12.
at : 12.
Author : 12.
BEGIN: 31.
Body : 29.
Bone : 12.
can : 12.
chk auxiliary files : 5, 10, 17, 28.
chk empty directory : 5, 20, 28.
chk empty files : 5, 19, 28.
chk extended file attributes : 5, 18, 28.
chk file permissions : 5, 21, 24, 28.
chk file to bypass in zip : 5, 22, 28.
cleanup : 12.
close : 14, 15, 18, 19, 20, 21, 25, 26.
Code : 12.
copy : 12.
correct : 17.
Correction : 12.
ctan : 12.
CTAN: 12.
Ctan chk : 3.
ctan chk : 1, 3, 4, 5, 8, 9, 10, 12, 24, 28.
ctan chk bash : 4.
Dave : 12.
delete file : 5, 10, 17, 19, 26, 29.
describing : 12.
distributed : 12.
document : 12.
droppings : 12.
END: 33.
file : 12.
filename : 14, 15, 17, 18, 19, 20, 21, 22, 24,

25, 26, 28, 29.
filetype : 14, 15, 21.
Form : 12.
function : 14, 15, 17, 18, 19, 20, 21, 22, 24,

25, 26, 28, 29.
functions : 12.
gawk : 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 28.
General : 12.
getline : 14, 15, 18, 19, 20, 21, 25, 26.
GNU: 12.
guidelines : 12, 17.
help : 12.
How : 6.
If : 12.
Implementation : 12.
is : 12.

is file a directory : 5, 14, 17, 19, 20, 21.
is file an executable : 5, 15, 21.
License : 12.
message : 24, 25, 29.
MPL: 12.
NR: 33.
number fields : 21.
number of fields : 18, 19, 20.
obtain : 12.
of : 12.
one : 12.
org : 12.
parts : 14, 15, 18, 19, 20, 21.
Pass : 17.
pass1 guidelines verify : 7, 9, 10, 28, 29, 32.
pass2 correct : 6, 7, 29, 32.
pdf : 3, 4, 12.
print : 17, 18, 19, 20, 21, 22, 24, 25, 33.
Program : 12.
program : 6, 12.
project : 12.
Public : 12.
Purpose : 12.
Read : 12.
rec cnt : 31.
remove file s execute attribute : 5, 24, 29.
remove file s extended attributes : 5, 18, 25, 29.
respect : 12.
run : 12.
scenarios : 12.
See : 12.
should : 12.
some : 12.
Source : 12.
split : 14, 15, 18, 19, 20, 21.
sprintf : 14, 15, 17, 18, 19, 20, 21, 22, 25, 26.
str : 14, 15, 17, 18, 21, 22.
strtonum : 19, 20.
subject : 12.
suggested : 12.
terms : 12.
that : 12.
the : 12.
This : 12.
to : 6, 12.
upload : 12.
use : 6.
various : 12.
version : 12.
violated : 17.
was : 12.

20 INDEX CTAN˙CHK §35

website : 12.
with : 12.
www : 12.
xx : 14, 15, 18.
You : 12.
zip : 3.

CTAN˙CHK NAMES OF THE SECTIONS 21

〈Emit gawk comments 12 〉 Used in section 34.

〈 ctan_chk.gawk 34 〉
〈pass 1 guidelines verify 28 〉 Used in section 34.

〈pass 2 guidelines correction 29 〉 Used in section 34.

〈 BEGIN 31 〉 Used in section 34.

〈Body 32 〉 Used in section 34.

〈 END 33 〉 Used in section 34.

〈 chk auxiliary files 17 〉 Used in section 34.

〈 chk empty directory 20 〉 Used in section 34.

〈 chk empty files 19 〉 Used in section 34.

〈 chk extended file attributes 18 〉 Used in section 34.

〈 chk file permissions 21 〉 Used in section 34.

〈 chk file to bypass in zip 22 〉 Used in section 34.

〈 delete file 26 〉 Used in section 34.

〈 is file a directory 14 〉 Used in section 34.

〈 is file an executable 15 〉 Used in section 34.

〈 remove file s execute attribute 24 〉
〈 remove file s extended attributes 25 〉 Used in section 34.

CTAN˙CHK

Section Page
Gawk program ctan chk .gawk . 1 1

License . 2 2
Ctan chk reference . 3 2
Literate Programming genre . 4 2

Comments on program’s functions . 5 3
Running Gawk program has 2 run/pass attitude . 6 4
Anatomy of this gawk program . 7 4
How to generate the pdf document and this gawk program . 8 5
How to use this gawk program . 9 5

Example: Checking auxilary files to delete . 10 6
Function code sections . 11 8

ctan gawk’s comments — author, license etc . 12 8
Helper functions . 13 9

Is file a directory . 14 9
Is file an executable . 15 9

Guideline assessment functions . 16 10
Check for auxiliary type files . 17 10
Check for extended attributes . 18 11
Check for empty files . 19 12
Check for empty directory . 20 13
Check file permissions . 21 13
Check file to bypass in zip . 22 14

Correct guideline violations . 23 15
Remove file’s execute attribute . 24 15
Remove file’s with extended attributes . 25 15
Delete file . 26 16

Pass 1 / 2 guidelines assessment and correction . 27 17
Pass 1 — guidelines assessment . 28 17
Pass 2 — correct violated guidelines . 29 17

Gawk Begin, Body, End actions . 30 18
Begin . 31 18
Body . 32 18
END . 33 18

Index . 35 19

	Gawk program ctan_chk.gawk
	License
	Ctan_chk reference
	Literate Programming genre

	Comments on program's functions
	Running Gawk program has 2 run/pass attitude
	Anatomy of this gawk program
	How to generate the pdf document and this gawk program
	How to use this gawk program
	Example: Checking auxilary files to delete

	Function code sections
	ctan gawk's comments --- author, license etc
	Helper functions
	Is file a directory
	Is file an executable

	Guideline assessment functions
	Check for auxiliary type files
	Check for extended attributes
	Check for empty files
	Check for empty directory
	Check file permissions
	Check file to bypass in zip

	Correct guideline violations
	Remove file's execute attribute
	Remove file's with extended attributes
	Delete file
	Pass 1 / 2 guidelines assessment and correction
	Pass 1 --- guidelines assessment
	Pass 2 --- correct violated guidelines
	Gawk Begin, Body, End actions
	Begin

	Body
	END
	Index
	Names of the sections
	Emit gawk comments
	ctan_chk.gawk
	pass 1 guidelines verify
	pass 2 guidelines correction
	BEGIN
	Body
	END
	chk_auxiliary_files
	chk_empty_directory
	chk_empty_files
	chk_extended_file_attributes
	chk_file_permissions
	chk_file_to_bypass_in_zip
	delete_file
	is_file_a_directory
	is_file_an_executable
	remove_file_s_execute_attribute
	remove_file_s_extended_attributes

