
SpiX
Release 1.3.0

Louis Paternault

Nov 18, 2022

Contents

1 Quickstart 2
1.1 Why SpiX? . 2
1.2 The .tex file . 2
1.3 Compilation . 3

2 Support 3
2.1 License . 3
2.2 Documentation . 3
2.3 Help! . 4

3 Why SpiX? 4
3.1 Which problems does SpiX solve? . 4
3.2 Why not using any other tool? . 5
3.3 Why is it named SpiX? . 6

4 Download and Install 6

5 Usage 8
5.1 Configuration . 8
5.2 Allowed commands . 9
5.3 Environment variables . 10
5.4 About errors . 10
5.5 Command line arguments . 10
5.6 Warning . 11

1

6 Frequently asked questions 11
6.1 Why won’t SpiX accept any option to control compilation? 11
6.2 How to re-run SpiX as soon as a file has changed? 12
6.3 How to run SpiX on several files? . 12
6.4 How to check if a .tex file has any SpiX commands set? 12
6.5 How to stop compilation on first error? . 13
6.6 How to go on compiling, even when errors occur? 14

SpiX is yet another compilation tool1 for .tex files. It aims at being simple and human readable.
Every piece of configuration is written in the .tex file itself, in a clear format (a list of console
commands).

Quickstart (page 2) should give you enough information to start using SpiX. License and links are
given in Support (page 3). InWhy SpiX? (page 4), you can find out if you should use SpiX, or if
you should prefer another tool. To install SpiX, read Download and Install (page 6). The detailed
SpiX manual is in Usage (page 8). At last, Frequently asked questions (page 11) give answers to
some questions you might have.

1 Quickstart

1.1 Why SpiX?

With SpiX, the compilation process of a .tex file (Is it compiled using latex? pdflatex? xelatex?
lualatex? Should I process its bibliography? with bibtex or biber? Is there an index?) is written
in the .tex file itself, in a human-readable format (a shell script). That way2:

• when you want to compile two years later, you don’t have to guess the compilation process;

• you can send the .tex file to someone, and that’s it: no need to send detailed instructions
or a Makefile along with it (everything is in the .tex file);

• the compilation process is human readable: it can be understood by anyone who is able to
read a very basic shell script. In particular, one can read it even if she does not know SpiX.

1.2 The .tex file

Write the compilation process of your .tex file as a shell script, before the preamble, as lines
starting with %$:

% Compile this file twice with lualatex.
%$ lualatex foo.tex
%$ lualatex foo.tex

(continues on next page)

1 https://www.ctan.org/topic/compilation
2 A more detailed answer to “Why SpiX?” can be found inWhy SpiX? (page 4).

2

https://www.ctan.org/topic/compilation

(continued from previous page)

\documentclass{article}
\begin{document}
Hello, world!
\end{document}

You can also replace the file name with $texname (and $basename, without the extension).
That way, you don’t have to worry about the file name when writing your commands.

% Compile this file twice with lualatex.
%$ lualatex $texname
%$ lualatex $texname

1.3 Compilation

To compile the .tex file, run SpiX:

spix foo.tex

Spix will parse the .tex file, looking for shell snippets (lines before the preamble starting with
%$), and run them.

That’s all!

2 Support

2.1 License

SpiX is licensed under the Gnu GPL 3 license3, or any later version.

2.2 Documentation

• The source documentation is written in rst format, and compiled using Sphinx4. It can
be found in the git repository of this project5.

• Those .rst files are compiled by Sphinx into a .tex file, itself compiled into a .pdf
file. This .pdf file can be found at ReadTheDocs.org6.

• To compile the documentation yourself:

– Download and install Sphinx7.
3 https://www.gnu.org/licenses/gpl-3.0.html
4 https://www.sphinx-doc.org
5 https://framagit.org/spalax/spix
6 https://spix.readthedocs.io/ /downloads/en/latest/pdf/
7 https://www.sphinx-doc.org/en/master/usage/installation.html

3

https://www.gnu.org/licenses/gpl-3.0.html
https://www.sphinx-doc.org
https://framagit.org/spalax/spix
https://spix.readthedocs.io/_/downloads/en/latest/pdf/
https://www.sphinx-doc.org/en/master/usage/installation.html

– Download SpiX8.

– Go to the doc directory.

– Run make html or make latexpdf.

2.3 Help!

• The home page of SpiX is: http://framagit.org/spalax/spix.

• Documentation is at: http://spix.rtfd.io.

• To report bugs, or ask for help, visit: https://framagit.org/spalax/spix/issues (if you don’f
feel like creating yet another account, you can send me an email at spalax(at)gre-
sille(dot)org).

3 Why SpiX?

3.1 Which problems does SpiX solve?

The goal of SpiX is to have every information about a .tex compilation process inside the very
file to process.

Example 1

Alice is a math teacher. She writes every document she shows or hands out to her students using
LaTeX. She has a repository consisting of hundreds of LaTeX files9. Most of her documents
are compiled using a single pass of LuaLaTeX, but some of them need two passes (because labels
and references), some of them contains pstricks10 figures that must be compiled with LaTeX, then
converted to PDF (because she copied them from another repository that uses LaTeX11)…

When she works on a file she edited one year ago, with her previous class, she has to guess how
to compile it (lualatex? lualatex+lualatex? latex+dvipdf?).

Using SpiX, the compilation process is written inside the .tex file, so she can:

• look at it to see which tool to use to compile it;

• compile it using SpiX.
8 https://spix.readthedocs.io/en/latest/install/
9 https://framagit.org/lpaternault/cours-2-math
10 https://tug.org/PSTricks/
11 https://www.apmep.fr/-Annales-Bac-Brevet-BTS-

4

https://spix.readthedocs.io/en/latest/install/
http://framagit.org/spalax/spix
http://spix.rtfd.io
https://framagit.org/spalax/spix/issues
https://framagit.org/lpaternault/cours-2-math
https://tug.org/PSTricks/
https://www.apmep.fr/-Annales-Bac-Brevet-BTS-

Example 2

Alice happens to works with Bob, who also uses LaTeX. The ideal way to work on the same
file would be to share a git repository containing a Makefile, but evoking those tools would scare
Bob away. So they exchange files via email. Using SpiX, the compilation process of the file they
exchange is written inside the file itself:

% Use lualatex twice to compile this file:
%$ lualatex foo.tex
%$ lualatex foo.tex

\documentclass{article}
\begin{document}
Hello, world!
\end{document}

• Alice: The first three lines of this file can be parsed by SpiX, so that Alice simply runs
spix foo to compile it;

• Bob: The first three lines of this file are human-readable, so Bob understands how he should
compile it.

3.2 Why not using any other tool?

Makefile

If your project is complex (convert images, compile .dot graphs, several latex passes, bibliog-
raphy, index…), use a Makefile. You may prefer SpiX if:

• the Makefile would be only two lines long;

• you have tens or hundreds of simple .tex files, with slighly different compilation processes
(which would mean tens or hundreds of Makefiles, or a huge Makefile);

• you want to have the compilation process inside the .tex file itself.

Arara

I got the idea to write compilation information into the .tex file itself from Arara12.

Arara provides a set of rules to compile files. If something is missing, you can write your own
rule in an external file, so you might prefer SpiX if you want everything in the same .tex file.

Arara configuration is written using YAML. So, to understang Arara configuration, one has to
know YAML and Arara (while SpiX configuration is plain shell commands, so it is human read-
able22).

Youmight prefer Arara if you have complex rules; SpiX is well suited for plain, simple commands.
12 https://gitlab.com/islandoftex/arara
22 At least, readable by anyone who can use a terminal.

5

https://gitlab.com/islandoftex/arara

TrY

TrY13 does exactly what SpiX does (and I copied the syntax of commands in.tex files fromTrY).
But it is written in Python2 (which is obsolete14), and it seems to be no longer maintained15.

SpiX can be seen as a successor of TrY23.

Latexmk

Latexmk16 (and similar tools17) has a slightly different purpose.

• It guesses how to compile file (how many passes, etc.), while SpiX commands are explicit
(there is no magic in SpiX).

• User has to specify which flavor (LaTeX, pdflatex, LuaTeX, XeLaTeX…) to use, while
with SpiX, this is stored in the .tex file.

3.3 Why is it named SpiX?

Arara18 is named after the blue-and-yellowmacaw19 (ararameaningmacaw in Portuguese), which
is a big parrot. This project, which aims at being a simple version of Arara, is named after the
blue winged parrotlet20 (toui de Spix in French), which is a small parrot.

Obviously, the capital X is a nod to the capital X of LaTeX.

4 Download and Install

• If applicable, the easiest way to get SpiX working is by using your distribution package man-
ager. With Debian (and Ubuntu, and surely other distributions that inherit from Debian), it
is in package texlive-extra-utils24 (since version 2020.20210202-3):

sudo apt install texlive-extra-utils

• If spix is not packaged (yet) for your operating system, the next preferred installationmethod
uses pip25 (preferably in a virtualenv26):

13 https://ctan.org/pkg/try
14 https://blog.python.org/2020/04/python-2718-last-release-of-python-2.html
15 https://bitbucket.org/ajabutex/try/issues/14/is-this-project-still-maintained
23 Without any endorsment by the original author of TrY.
16 http://personal.psu.edu/jcc8/latexmk/
17 https://www.ctan.org/topic/compilation
18 https://gitlab.com/islandoftex/arara
19 https://en.wikipedia.org/wiki/Blue-and-yellow macaw
20 https://en.wikipedia.org/wiki/Blue-winged parrotlet
21 https://commons.wikimedia.org/w/index.php?curid 79073013
24 https://packages.debian.org/search?keywords texlive-extra-utils
25 https://pip.pypa.io
26 https://docs.python-guide.org/dev/virtualenvs/

6

https://ctan.org/pkg/try
https://blog.python.org/2020/04/python-2718-last-release-of-python-2.html
https://bitbucket.org/ajabutex/try/issues/14/is-this-project-still-maintained
http://personal.psu.edu/jcc8/latexmk/
https://www.ctan.org/topic/compilation
https://gitlab.com/islandoftex/arara
https://en.wikipedia.org/wiki/Blue-and-yellow_macaw
https://en.wikipedia.org/wiki/Blue-winged_parrotlet
https://packages.debian.org/search?keywords=texlive-extra-utils
https://pip.pypa.io
https://docs.python-guide.org/dev/virtualenvs/

Fig. 1: A blue winged parrotlet. Photo by Evaldo Resende - Own work, CC BY-SA 4.021 (flipped,
resized, reframed by Louis Paternault).

python3 -m pip install spix

• Or you can install it from sources:

– download the stable27 or development28 version;

– unpack it;

– install it (in a virtualenv29, if you do not want tomess with your distribution installation
system):

python3 -m pip install .

• To install it from CTAN30:

– download31 the package from CTAN;

– extract the spix.py file, and copy it somewhere in your PATH. On GNU/Linux
(and MacOS?), you can rename it to spix.

• Quick and dirty Debian (and Ubuntu?) package

This requires stdeb32 to be installed:

27 https://pypi.python.org/pypi/spix
28 https://framagit.org/spalax/spix/-/archive/main/spix-main.zip
29 https://docs.python-guide.org/dev/virtualenvs/
30 https://ctan.org/
31 https://ctan.org/pkg/spix
32 https://github.com/astraw/stdeb

7

https://commons.wikimedia.org/w/index.php?curid=79073013
https://pypi.python.org/pypi/spix
https://framagit.org/spalax/spix/-/archive/main/spix-main.zip
https://docs.python-guide.org/dev/virtualenvs/
https://ctan.org/
https://ctan.org/pkg/spix
https://github.com/astraw/stdeb

python3 setup.py --command-packages=stdeb.command bdist_deb
sudo dpkg -i deb_dist/spix-<VERSION>_all.deb

5 Usage

• Configuration (page 8)

• Allowed commands (page 9)

• Environment variables (page 10)

• About errors (page 10)

• Command line arguments (page 10)

• Warning (page 11)

5.1 Configuration

To configure how your .tex file is compiled, simply write the necessary commands before your
preamble, preceded with %$. That’s all:

% Compile this file using latex+dvipdf:
%
%$ latex foo.tex
%$ dvipdf foo.dvi

\documentclass{article}
\begin{document}
Hello, world!
\end{document}

Now, when calling SpiX on this file, commands latex foo.tex and dvipdf foo.dvi
are called:

spix foo.tex

Note:

• The lines that are interpreted as snippets by SpiXmust begin exactly with the two characters
%$ followed by a space. Any other prefix is not considered a command:

%$ A command
% $ Ignored
%$Ignored

(continues on next page)

8

(continued from previous page)
%$ Ignored
$% Ignored

• Any snippet defined after the beginning of the preamble is ignored. SpiX does not parse
LaTeX code, so it considers any line that is not empty, or does not begin with % (maybe
preceded by spaces) as a preamble.

%$ A snippet
\documentclass{article}
%$ Ignored
\begin{document}
%$ Ignored
\end{document}
%$ Ignored

Note: There is no configuration file. SpiX is meant to run the same way on any machine: you
set up configuration in a .tex file, you send this file to your friend, she runs SpiX on it, and it
runs exactly the same way (not relying on a configuration file located somewhere in your home
directory, that you forgot to send along the .tex file).

5.2 Allowed commands

The code snippets defined in SpiX are interpreted by the sh shell33 (but try to stick to valid sh
code, to make your snippet portable). This means that variables and control structures are allowed.

%$ dviname=$basename.dvi
%$ latex $texname
%$ bibtex $basename
%$ for i in $(seq 3)
%$ do
%$ latex $basename
%$ endfor
%$ dvipdf $dviname

Consecutive lines starting with %$ are interpreted by one single shell call.

%$ myvariable=foo
%$ # This would display "foo"
%$ echo $myvariable
% This line does not start with "%$", starting another shell.
%$ # This would display nothing, since "$myvariable" has been␣
→˓defined in another shell.
%$ echo $myvariable

33 Which default to dash on Debian, for instance.

9

5.3 Environment variables

In order to be readable by a person who has never heard about SpiX, the snippets are run as-is
(interpreted by the sh shell).

A few environment variables are introduced (this allows snippets to be independent on file name).
For instance, suppose Donald is writing his next book, in ~/taocp/vol7.tex:

• $texname is the file name (without directory): vol7.tex;

• $basename is the file name, without extension: vol7.

For instance, if file foo.tex contains the following snippet:

%$ latex $texname
%$ dvipdf $basename

When calling SpiX, commands latex foo.tex and dvipdf foo are run.

5.4 About errors

SpiX will stop compilation when a code snippets fails (returns an error code different from 0).

To change this behavior, see How to stop compilation on first error? (page 13) or How to go on
compiling, even when errors occur? (page 14).

5.5 Command line arguments

Since there is no option to configure how compilation is performed (everything is in the .tex
file), the binary has very few options.

Compile a .tex file, executing commands that are set inside the file itself.

usage: spix [-h] [-n] [--version] FILE

Positional Arguments

FILE File to process.

Named Arguments

-n, --dry-run Print the commands that would be executed, but do not execute
them.

Default: False

--version Show version and exit.

10

5.6 Warning

SpiX is dumb: it does not control what is run, it does not check that it is safe to run. It runs what
it is told to run. For instance:

• it does not prevent malicious commands:

%$ rm -fr /

• it does not prevent infinite loops:

%$ spix $texname

• it does not prevent fork bombs:

%$ spix $texname & spix $texname &

Basically, calling SpiX is like running a shell script: do not call SpiX on an untrusted .tex file.

6 Frequently asked questions

• Why won’t SpiX accept any option to control compilation? (page 11)

• How to re-run SpiX as soon as a file has changed? (page 12)

• How to run SpiX on several files? (page 12)

• How to check if a .tex file has any SpiX commands set? (page 12)

• How to stop compilation on first error? (page 13)

• How to go on compiling, even when errors occur? (page 14)

6.1 Why won’t SpiX accept any option to control compilation?

The purpose of SpiX is to have every single piece of information regarding how to compile a .
tex file inside the .tex file itself. So, SpiX having options to control the compilation would go
against this purpose. That is why the only SpiX options are options about SpiX itself (--help,
--version), or about the compilation (--dry-run), but nothing that changes how the file is
to be compiled.

11

6.2 How to re-run SpiX as soon as a file has changed?

SpiX has no built-in feature to do this, but you can use external tools, like entr34:

ls foo.tex | entr spix foo.tex

But if your compilation process includes several passes of LaTeX, and biblatex, and…, you prob-
ably don’t want to re-run everything as soon as you fix a typo in your document. In this case, do
not use SpiX at all:

ls foo.tex | entr pdflatex foo.tex

Then, when every single typo has been fixed, at last, you can use SpiX to properly compile your
document:

spix foo.tex

6.3 How to run SpiX on several files?

SpiX accepts exactly one file as an argument.

To run it on several files, you can use find35:

find . -name *tex -exec spix {} \;

or parallel36:

parallel spix -- *tex

or both:

find . -name *tex -exec parallel spix -- {} \+

6.4 How to check if a .tex file has any SpiX commands set?

Option --dry-run will print the code snippets to be run by SpiX. Thus, to test whether any
code snippets has been set in a .tex file, you can test use:

if [-z "$(spix --dry-run foo.tex)"]
then

echo "No command defined."
else

echo "Some commands defined."
fi

34 https://eradman.com/entrproject/
35 https://www.gnu.org/software/findutils/
36 https://www.gnu.org/software/parallel/

12

https://eradman.com/entrproject/
https://www.gnu.org/software/findutils/
https://www.gnu.org/software/parallel/

6.5 How to stop compilation on first error?

A code snippet defined in your .tex file is executed, even if commands inside it fails. For
instance, suppose your file contains the following code snippet.

%$ latex $texname
%$ bibtex $basename
%$ latex $texname
%$ latex $texname
%$ dvipdf $basename

If the first LaTeX compilation fails, the following commands are still executed. Preventing any
further command to be executed is dealt with using the shell options, not SpiX. You can chain
your commands using &&:

%$ latex $texname &&\
%$ bibtex $basename &&\
%$ latex $texname &&\
%$ latex $texname &&\
%$ dvipdf $basename

or use set -e:

%$ set -e
%$ latex $texname
%$ bibtex $basename
%$ latex $texname
%$ latex $texname
%$ dvipdf $basename

or split you snippet into several snippets (that way, SpiX will stop after the first code snippet that
ends with an error):

%$ latex $texname
%
%$ bibtex $basename
%
%$ latex $texname
%
%$ latex $texname
%
%$ dvipdf $basename

13

6.6 How to go on compiling, even when errors occur?

If any code snippets ends with an error (an error code other than 0), SpiXwill stop the compilation.
You may want to continue, no matter what. Once again, this is achieved using the shell, not using
SpiX. You can:

• force the error code at the end of your code snippet:

%$ latex $texname
%$ exit 0

• Catch errors using || true:

%$ latex $texname || true

14

	Quickstart
	Why SpiX?
	The .tex file
	Compilation

	Support
	License
	Documentation
	Help!

	Why SpiX?
	Which problems does SpiX solve?
	Example 1
	Example 2

	Why not using any other tool?
	Makefile
	Arara
	TrY
	Latexmk

	Why is it named SpiX?

	Download and Install
	Usage
	Configuration
	Allowed commands
	Environment variables
	About errors
	Command line arguments
	Positional Arguments
	Named Arguments

	Warning

	Frequently asked questions
	Why won’t SpiX accept any option to control compilation?
	How to re-run SpiX as soon as a file has changed?
	How to run SpiX on several files?
	How to check if a .tex file has any SpiX commands set?
	How to stop compilation on first error?
	How to go on compiling, even when errors occur?

