The IXTEX3 Sources

The KTEX Project*
Released 2023-06-30

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document

1.1 Naming functions and variables
1.1.1 Scratch variableso oo
1.1.2 Terminological inexactitude

1.2 Documentation conventions

1.3 Formal language conventions which apply generally

1.4 TgX concepts not supported by BTEX3

II Bootstrapping

2

The 13bootstrap package: Bootstrap code
2.1 Using the BTEX3 modules

The 13names package: Namespace for primitives
3.1 Setting up the KTEX3 programming language

IIT Programming Flow

4

The 13basics package: Basic definitions
4.1 No operation functions
4.2 Grouping materialo oL
4.3 Control sequences and functions, .
4.3.1 Defining functions oo oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences Lo
4.3.5 Deleting control sequences oL Lo
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analysing control sequences oo
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionals.o
4.6.1 Tests on control sequences
4.6.2 Primitive conditionals oo 0oL
4.7 Starting a paragraph oL oL
4.8 Debugging support L e

ii

p—

N Ot ot ot N

The 13expan package: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants L L.
Introducing the variants L oo o
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.
Unbraced expansion oo
Preventing expansiono Lo Lo
Controlled expansion Lo
Internal functions oL L Lo

The I3sort package: Sorting functions

6.1

Controlling sorting L

The I3tl-analysis package: Analysing token lists

The 13regex package: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L o
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens o oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL L

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg package: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Constant and scratch booleans
Boolean expressionso L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L Lo o
Nestable recursions and mappings
9.8.1 Simple mappingsot
Internal programming functions Lo

iii

30
30
31
33
34
36
36
37
38
39
42

43
43

45

46
47
47
48
48
49
50
52
52
54
99
96
57
59
99

10 The I3sys package: System/runtime functions

10.1 The name of the job
10.2 Dateand time e
10.3 Engine L
10.4 Output format Lo
10.5 Platform
10.6 Random numbers L Lo
10.7 Accesstotheshell
10.8 Loading configuration data

10.8.1 Final settings L

11 The I13msg package: Messages

11.1 Creating new messages« v v v v v v vt i e
11.2 Customizable information for message modules
11.3 Contextual information for messages
11.4 Tssuing mesSages . . . v v v v v v v v i e e e e e e e e e e e

11.4.1 Messages for showing material

11.4.2 Expandable error messages
11.5 Redirecting messageso

12 The I3file package: File and I/O operations
12.1 Input-output stream management L.
12.1.1 Reading from files L o o
12.1.2 Reading from the terminal 0oL
12.1.3 Writing to files oL o
12.1.4 Wrapping lines in output
12.1.5 Constant input—output streams, and variables
12.1.6 Primitive conditionals oo,
12.2 File operation functions oo

13 The I3luatex package: LuaTgX-specific functions
13.1 BreakingouttoLua. o .
13.2 Luainterfaces L

14 The I3legacy package: Interfaces to legacy concepts

IV Data types

15 The 13tl package: Token lists
15.1 Creating and initialising token list variables
15.2 Adding data to token list variables
15.3 Token list conditionals L.
15.3.1 Testing the first token oL oL
15.4 Working with token lists asa whole
15.4.1 Using token lists o
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists L oo
15.5 Manipulating items in token lists 0oL,
15.5.1 Mapping over token lists

iv

73
73
73
74
(6]
7
5
76
(s
i

78
78
79
80
81
84
84
85

87
87
89
92
92
94
95
95
95

101
101
102

104

15.5.2 Head and tail of token lists 115

15.5.3 Items and ranges in token lists 117
15.5.4 Sorting token lists L o 119

15.6 Manipulating tokens in token lists 119
15.6.1 Replacing tokens L o oo 119
15.6.2 Reassigning category codes 120

15.7 Constant token lists L o 121
15.8 Scratch token lists 122
16 The I3str package: Strings 123
16.1 Creating and initialising string variables 124
16.2 Adding data to string variables 0oL 125
16.3 String conditionals oo oo 125
16.4 Mapping over strings 127
16.5 Working with the content of strings 129
16.6 Modifying string variables L o oL 132
16.7 String manipulation oL oL 133
16.8 Viewing strings Lo 134
16.9 Constant strings oL L e 135
16.10 Scratch strings oL e 135
16.11 Deprecated functions Lo 135
17 The I3str-convert package: String encoding conversions 136
17.1 Encoding and escaping schemes 136
17.2 Conversion functions L o o 138
17.3 Conversion by expansion (for PDF contexts) 138
17.4 Possibilities, and thingstodo 138
18 The I3quark package: Quarks 140
181 Quarks L e 140
18.2 Defining quarks Lo 141
18.3 Quark tests L 141
18.4 Recursion Lo e 142
18.4.1 An example of recursion with quarks 143

18.5 Scanmarks 144
19 The I3seq package: Sequences and stacks 145
19.1 Creating and initialising sequences 145
19.2 Appending data to sequences 147
19.3 Recovering items from sequences 147
19.4 Recovering values from sequences with branching 148
19.5 Modifying sequenceso e 150
19.6 Sequence conditionals oL o 151
19.7 Mapping over SeqUENCES v v v e e e e e e e e 151
19.8 Using the content of sequences directly 154
19.9 Sequences asstacks e 155
19.10 Sequences as SetSo Lol e 156
19.11 Constant and scratch sequences 157
19.12 Viewing SeqUencCes v v v v vt vt e e e e e e e 158

20 The 13int package: Integers

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Integer expressions
Creating and initialising integers
Setting and incrementing integerso L
Using integers L e
Integer expression conditionals L.
Integer expression loops. L Lo o
Integer step functionso Lo
Formatting integers Lo
Converting from other formats to integers

20.10 Random integers Lo o
20.11 Viewing integers oL o e
20.12 Constant integers
20.13 Scratch integers
20.14 Direct number expansiono
20.15 Primitive conditionals oL L oo

21 The I13flag package: Expandable flags

21.1
21.2

Setting up flagso
Expandable flag commands 0 L.

22 The I3clist package: Comma separated lists

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Creating and initialising comma lists
Adding data to comma lists,
Modifying comma lists
Comma list conditionals
Mapping over comma listso
Using the content of comma lists directly
Comma listsasstacks L L
Using a singleitem Lo oo
Viewing comma lists L

22.10 Constant and scratch comma lists

23 The I3token package: Token manipulation

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8

Creating character tokens
Manipulating and interrogating character tokens
Generic tokens L oL
Converting tokens oL L
Token conditionals Lo
Peeking ahead at the next token
Description of all possible tokens
Deprecated functions L

vi

159
159
162
163
164
164
166
168
169
170
171
171
172
172
173
173

175
175
176

177
178
179
180
181
181
183
184
185
186
186

24 The 13prop package: Property lists

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10

Creating and initialising property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo o
Property list conditionals oo L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. o oo
Scratch property lists Lo o
Constants e

25 The I3skip package: Dimensions and skips

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17
25.18
25.19
25.20
25.21
25.22
25.23
25.24
25.25

Creating and initialising dim variables.
Setting dim variables L Lo L
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso 0oL
Using dim expressions and variables
Viewing dim variables L
Constant dimensions L0
Scratch dimensions
Creating and initialising skip variables
Setting skip variables L oL o
Skip expression conditionals L. 0oL 0oL oL
Using skip expressions and variables
Viewing skip variables oo o000
Constant skips
Scratch skips oL
Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables L Lo
Using muskip expressions and variables
Viewing muskip variables L Lo
Constant muskipso oL
Scratch muskips o
Primitive conditional oo oo

26 The I3keys package: Key—value interfaces

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10

Creating keys o
Sub-dividing keys
Choice and multiple choice keys Lo Lo
Key usage scope oo
Setting keys oL e
Handling of unknown keys
Selective key setting
Digesting keys Lo
Utility functions for keys oo oo
Low-level interface for parsing key—val lists

vii

205
205
206
207
208
208
209
210
211
212
212

213
213
214
214
215
217
218
219
221
222
222
222
223
224
224
224
225
225
225
226
226
227
227
228
228
228

27 The I3intarray package: Fast global integer arrays

27.1

[3intarray documentation oo
27.1.1 Implementation notes oL

28 The 13fp package: Floating points

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9

Creating and initialising floating point variables
Setting floating point variables oo
Using floating points L o
Floating point conditionals
Floating point expression loops
Some useful constants, and scratch variables
Scratch variables
Floating point exceptions L.
Viewing floating points oo oo oo

28.10 Floating point expressions oL oL

28.10.1Input of floating point numbers
28.10.2 Precedence of operators
28.10.3Operations

28.11 Disclaimer and roadmap Lo

29 The I3fparray package: Fast global floating point arrays

29.1

[3fparray documentationo oL

30 The I3cctab package: Category code tables

30.1
30.2
30.3
30.4

Creating and initialising category code tables
Using category code tables 0.
Category code table conditionals
Constant and scratch category code tables

V Text manipulation

31 The 13unicode package: Unicode support functions

32 The I3text package: Text processing

32.1
32.2
32.3
324
32.5

Expanding text Lo
Case changing L
Removing formatting from text o oL
Control variables
Mapping to graphemes L e

V1 Typesetting

viii

33 The I3box package: Boxes 283
33.1 Creating and initialising boxes 283
33.2 Using boxes 284
33.3 Measuring and setting box dimensions 0oL 285
33.4 Boxconditionals 286
33.5 The last box inserted 286
33.6 Constant boxes 286
33.7 Scratch boxes 286
33.8 Viewing box contents 0oL 287
33.9 Boxesand color 287
33.10 Horizontal mode boxes 287
33.11 Vertical mode boxes 288
33.12 Using boxes efficiently o 290
33.13 Affine transformations Lo 291
33.14 Viewing part of abox L o oo 294
33.15 Primitive box conditionals 295

34 The I3coffins package: Coffin code layer 296
34.1 Creating and initialising coffins L. 296
34.2 Setting coffin content and poleso L. 297
34.3 Coffin affine transformations 298
34.4 Joining and using coffins L oL oo 299
34.5 Measuring coffinso 299
34.6 Coflin diagnostics L 300
34.7 Constants and variables. o 301

35 The I3color package: Color support 302
35.1 Colorin boxes e 302
35.2 Colormodels. 302
35.3 Color expressionsl 304
35.4 Named colors e e e e 305
35.5 Selecting colors oL 305
35.6 Colors for fills and strokes o 306

35.6.1 Coloring math mode material 306
35.7 Multiple color models 306
35.8 Exporting color specifications oL oL 307
35.9 Creating new color models L oL 308
35.9.1 Color profiles 309

36 The 13pdf package: Core PDF support 310
36.1 Objects o . e 310
36.2 Version 311
36.3 Page (media) size 312
36.4 Compressiono oa e e e 312
36.5 Destinations e e e 312
36.6 Deprecated functions L oL 314

VII Additions and removals 315

ix

37 The I3candidates package: Experimental additions to I3kernel

37.1
37.2
37.3

Important notice L L
Additions to 13seq
Additions to I3t

VIII Implementation

38 13bootstrap implementation

38.1
38.2
38.3
38.4

The \pdfstrcmp primitive in XgqITEpX
Loading support Lua code
Engine requirementso Lo o Lo Lo
The BTEX3 code environment

39 I13names implementation

40 I13kernel-functions: kernel-reserved functions

40.1
40.2

Internal kernel functions e
Kernel backend functions

41 I3basics implementation

41.1
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9
41.10
41.11
41.12
41.13
41.14
41.15
41.16
41.17
41.18
41.19
41.20
41.21
41.22

Renaming some TEX primitives (again)
Defining some constants oL oL oL
Defining functions Lo Lo
Selecting tokens oL
Gobbling tokens from input oL oo
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence oo
Exist or free L
Preliminaries for new functions L oL
Defining new functions L.
Copying definitionso
Undefining functions L oo
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions
Checking control sequence equality
Diagnostic functions oL oo
Decomposing a macro definition o000
Doing nothing functions,
Breaking out of mapping functions
Starting a paragraph

319
319
319
320
321

323

349
349
356

42 13expan implementation
42.1 General expansion e e e
42.2 Hand-tuned definitionso
42.3 Last-unbraced versions
42.4 Preventing expansiono e
42.5 Controlled expansion L oL
42.6 Defining function variants
42.7 Definitions with the automated technique
42.8 Held-over variant generation L oL
43 I13sort implementation
43.1 Variables
43.2 Finding available \toks registers
43.3 Protected user commands oL
43.4 Merge Sort oL e
43.5 Expandable sorting
43.6 MeSsages e e e
44 13tl-analysis implementation
44.1 Internal functions Lo o
44.2 Internal format
44.3 Variables and helper functions 0oL
444 Planof attack
44.5 Disabling active characters L Lo
44.6 First pass oo e e e e e
44.7 Second PASS . . .t e e e e e e e e e e e e
44.8 Mapping through the analysis
44.9 Showing theresults oL o
44.10 Peeking ahead Lo
4411 MESSAZES « v v v v e e e e e e e e e e e e e e e e e
45 13regex implementation
45.1 Planof attack L
45.2 Helpers e
45.2.1 Constants and variables
45.2.2 Testing characters o
45.2.3 Internal auxiliaries Lo oo
45.2.4 Character property tests oL oL
45.2.5 Simple character escape oL
45.3 Compiling e
45.3.1 Variables used when compiling
45.3.2 Generic helpers used when compiling
45.3.3 Mode e
45.3.4 Framework Lo
45.3.5 Quantifiers e
45.3.6 Raw characters L L
45.3.7 Character properties
45.3.8 Anchoring and simple assertions
45.3.9 Character classes L o
45.3.10 Groups and alternations oL

Xi

388
388
392
395
397
397
398
408
409

410
410
411
413
415
418
423

426
426
426
427
429
430
431
436
439
440
442
449

45.3.11 Catcodes and csnameso e 487

45.3.12Raw token lists with \u oo 491
45.3.130ther 495
45.3.14 Showing regexeso i e e e 495

454 Building 502
45.4.1 Variables used while building0 502
45.4.2 Framework Lo 503
45.4.3 Helpers for building an NFA oL 506
45.4.4 Building classes L o 507
45.4.5 Building groups oL e 509
45.4.6 Others oL e 513

45.5 Matching 515
45.5.1 Variables used when matching 515
45.5.2 Matching: framework oL L. 518
45.5.3 Using states of the NFAo 521
45.5.4 Actions when matching oL, 522

45.6 Replacemento 524
45.6.1 Variables and helpers used in replacement 524
45.6.2 Query and brace balance L. 526
45.6.3 Framework 527
45.6.4 Submatches Lo 530
45.6.5 Csnames in replacement Lo 532
45.6.6 Characters in replacement 533
45.6.7 Anerror L. 537

45.7 User functions 537
45.7.1 Variables and helpers for user functions 540
45.7.2 Matching L 542
45.7.3 Extracting submatcheso oL 543
45.7.4 Replacement Lo 548
45.7.5 Peeking ahead Lo o o 551

45.8 Messages 557
45.9 Code for tracingo 563
46 13prg implementation 564
46.1 Primitive conditionals Lo oo 564
46.2 Defining a set of conditional functions o000 564
46.3 The boolean data type L L s 564
46.4 Internal auxiliarieso L Lo 566
46.5 Boolean expressions oL Lo e 567
46.6 Logical loops L e 572
46.7 Producing multiple copies Lo 574
46.8 Detecting TEX'smode L oL o LYE)
46.9 Internal programming functions 576

xii

47 13sys implementation 578

471 Kernel code e 578
47.1.1 Detecting the engineo 578
47.1.2 Platform. e 581
47.1.3 Configurations oL Lo 581
4714 Access totheshell o o o 583

47.2 Dynamic (every job) code o 586
47.2.1 The name of thejob 586
47.2.2 Time and date 586
47.2.3 Random numberso 587
4724 Access totheshell L o o 588
47.2.5 Held over from 13file oo 589

47.3 Last-minute code Lo Lo 589
47.3.1 Detecting the output oo 589
47.3.2 Configurations L 590

48 13msg implementation 592

48.1 Internal auxiliaries 592

48.2 Creating messages v vttt e e e 592

48.3 Messages: support functions and text Lo oL 594

48.4 Showing messages: low level mechanism 595

48.5 Displaying messages Lo e e 597

48.6 Kernel-specific functions oL 606

48.7 Internal messages e 607

48.8 Expandable errorso Lo 614

48.9 Message formattingo 615

49 13file implementation 616

49.1 Inmput operationso L 616
49.1.1 Variables and constants 0oL 616
49.1.2 Stream management 617
49.1.3 Reading input L 620

49.2 Output operations. e 623
49.2.1 Variables and constants L 0oL 623
49.2.2 Internal auxiliaries Lo L Lo 624

49.3 Stream management oL e 625
49.3.1 Deferred writing o 627
49.3.2 Immediate writing oL oo 628
49.3.3 Special characters for writing o000 628
49.3.4 Hard-wrapping lines to a character count 629

49.4 Fileoperations e 638
49.4.1 Internal auxiliaries Lo Lo 640

49.5 GetldInfo 655

49.6 Checking the version of kernel dependencies 656

49.7 MeSSaZeS o e e e e e e e e e 658

49.8 Functions delayed from earlier modules 658

xiii

50 13luatex implementation 660
50.1 BreakingouttoLua. L 660
50.2 Messages 661
50.3 Lua functions for internal use 662
50.4 Preserving iniTeX Lua data for runs 667

51 I3legacy implementation 669

52 13tl implementation 671
52.1 Functions. e 671
52.2 Constant token lists oL 673
52.3 Adding to token list variables o000 673
52.4 Internal quarks and quark-query functions 676
52.5 Reassigning token list category codes 676
52.6 Modifying token list variables o000 679
52.7 Token list conditionals L. 683
52.8 Mapping over token lists 0oL 687
52.9 Using token lists L 689
52.10 Working with the contents of token lists 690
52.11 The first token from a token list 693
52.12 Token by token changes. oo oL 697
52.13 Using a single item L L 700
52.14 Viewing token lists L o oo 703
52.15 Internal scan markso L Lo 704
52.16 Scratch token lists o 705

53 13str implementation 706
53.1 Internal auxiliaries L Lo 706
53.2 Creating and setting string variables 707
53.3 Modifying string variableso 0oL o oL 708
53.4 String comparisons o 709
53.5 Mapping over strings Lo L Lo 712
53.6 Accessing specific characters in a stringo L. 714
53.7 Counting characters L 719
53.8 The first character in a string 720
53.9 String manipulation Lo 721
53.10 Viewing strings Lo 725

54 I3str-convert implementation 726
54.1 Helpers 726

54.1.1 Variables and constants 726
54.2 String conditionals Lo 728
54.3 Conversions o 729
54.3.1 Producing one byte or character 729
54.3.2 Mapping functions for conversions 730
54.3.3 Error-reporting during conversion. 731
54.3.4 Framework for conversions oL 732
54.3.5 Byte unescape and escapeo 736
54.3.6 Native strings 737
54.3.7 clist e e 738

Xiv

54.3.8 8-bit encodings Lo

544 MESSAZES « v v v e e e e e e e e e e e e e
54.5 Escaping definitions L oL Lo
54.5.1 Unescape methods
54.5.2 Escape methods Lo L.
54.6 Encoding definitions L 0oL
54.6.1 UTF-8 support o o e e
54.6.2 UTF-16 support o . o v v i
54.6.3 UTF-32 support« . o v i i e
54.7 PDF names and strings by expansion
54.7.1 18O 8859 support
55 13quark implementation
55.1 Quarks
55.2 Scanmarkso
56 13seq implementation
56.1 Allocation and initialisation L.
56.2 Appending data to eitherend oL oL 0oL
56.3 Modifying sequences
56.4 Sequence conditionals
56.5 Recovering data from sequences
56.6 Mapping over SeqUENCES . . .« . .« v e e e e e e e e e e
56.7 Using sequences o .ttt e e
56.8 Sequence stacks oL oL
56.9 Viewing sequenceso e e e e e e e
56.10 Scratch sequences e e e e
57 13int implementation
57.1 Integer expressionso e
57.2 Creating and initialising integers L oL
57.3 Setting and incrementing integers oL
57.4 Using integers oL
57.5 Integer expression conditionals L Lo L.
57.6 Integer expression loops. L Lo e
57.7 Integer step functions
57.8 Formatting integerso L Lo
57.9 Converting from other formats to integers
57.10 Viewing integer o e
57.11 Random integers e e
57.12 Constant integers L
57.13 Scratch integers L L
57.14 Integers for earlier modules Lo
58 13flag implementation
58.1 Nomn-expandable flag commands
58.2 Expandable flag commandso 0oL oL

XV

780
780
788

790
791
794
795
799
801
805
810
810
811
812

813
814
816
818
819
819
823
824
826
832
834
835
835
836
836

59 13clist implementation
59.1 Removing spaces around items oL
59.2 Allocation and initialisation
59.3 Adding data to comma lists oo
59.4 Comma listsasstacks oL oo
59.5 Modifying comma listso Lo
59.6 Comma list conditionals
59.7 Mapping over comma lists L o L oo
59.8 Using comma lists L oL
59.9 Using asingleitem Lo
59.10 Viewing comma lists L L oo
59.11 Scratch comma lists L

60 13token implementation
60.1 Internal auxiliaries L Lo
60.2 Manipulating and interrogating character tokens
60.3 Creating character tokens
60.4 Generic tokens L e e e
60.5 Token conditionals o
60.6 Peeking ahead at the next token oL

61 13prop implementation
61.1 Internal auxiliaries L o
61.2 Allocation and initialisation Lo
61.3 Accessing data in property lists L oL
61.4 Property list conditionals L oo
61.5 Recovering values from property lists with branching
61.6 Mapping over property lists Lo
61.7 Viewing property lists. Lo oo

62 13skip implementation
62.1 Length primitives renamed oL
62.2 Internal auxiliaries L L o
62.3 Creating and initialising dim variables.
62.4 Setting dim variables L L oL
62.5 Utilities for dimension calculations
62.6 Dimension expression conditionals 0oL
62.7 Dimension expression loops. L oL
62.8 Dimension step functions oL oL oo
62.9 Using dim expressions and variableso 0L
62.10 Conversion of dim to other units
62.11 Viewing dim variables oL oL oL
62.12 Constant dimensions L L e
62.13 Scratch dimensions o
62.14 Creating and initialising skip variables
62.15 Setting skip variables L L
62.16 Skip expression conditionals
62.17 Using skip expressions and variables
62.18 Inserting skips into the output oL
62.19 Viewing skip variables oL oo oL

XVi

840
841
842
844
845
847
850
851
855
857
859
860

861
861
861
864
870
871
880

888
889
890
892
897
898
898
900

62.20
62.21
62.22
62.23
62.24
62.25
62.26
62.27

63 13key
63.1
63.2

63.3
63.4
63.5
63.6
63.7
63.8

Constant skips
Scratch skips e
Creating and initialising muskip variables
Setting muskip variables Lo Lo oL
Using muskip expressions and variables
Viewing muskip variables o o oL
Constant muskips
Scratch muskips

s implementation
Low-level interface L
Constants and variables

63.2.1 Internal auxiliaries
The key defining mechanism 0.
Turning properties into actions oo 0oL,
Creating key properties e
Setting keys e
Utilities o e e e e
Messageso

64 13intarray implementation

64.1

64.2

64.3

Lua implementation
64.1.1 Allocating arrayso o
64.1.2 Array items
64.1.3 Working with contents of integer arrays

Font dimension based implementation
64.2.1 Allocating arrays oo
64.2.2 Arrayitems
64.2.3 Working with contents of integer arrays

Common parts oo e

65 13fp implementation

66 13fp-aux implementation

66.1
66.2
66.3
66.4
66.5
66.6
66.7
66.8
66.9
66.10
66.11
66.12
66.13
66.14
66.15

Access to primitives oL
Internal representation o L.
Using arguments and semicolons
Constants, and structure of floating points
Overflow, underflow, and exact zero
Expanding after a floating point numbero
Other floating point types oo
Packing digits
Decimate (dividing by a power of 10)
Functions for use within primitive conditional branches
Integer floating points L L
Small integer floating points Lo Lo
Fast string comparison oo oo
Name of a function from its [3fp-parse name
MeSSAZES « v v v v e e e e e e e e e e e

xvii

923
923
930
932
933
935
942
948
957
960

961
961
961
964
966
967
968
969
971
973

974

67 13fp-traps implementation 993

67.1 Flags o o e 993
67.2 Traps o o e e 993
67.3 Errors 997
67.4 MeSSages . .« v v v i e e e e e e e e 997
68 13fp-round implementation 999
68.1 Rounding tools 999
68.2 The round function 1003
69 13fp-parse implementation 1008
69.1 Work plan 1008
69.1.1 Storing results Lo 1009
69.1.2 Precedence and infix operators 1010
69.1.3 Prefix operators, parentheses, and functions 1013
69.1.4 Numbers and reading tokens one by one 1014

69.2 Main auxiliary functions oo Lo 1016
69.3 Helpers L 1017
69.4 Parsing one number Lo 1018
69.4.1 Numbers: trimming leading zeros 1024
69.4.2 Number: small significand 1025
69.4.3 Number: large significand 1027
69.4.4 Number: beyond 16 digits, rounding 1029
69.4.5 Number: finding the exponent 1032

69.5 Constants, functions and prefix operators 1035
69.5.1 Prefix operators 1035
69.5.2 Constants 1038
69.5.3 Functions L 1039

69.6 Main functions.o Lo 1040
69.7 Infix operatorso 1042
69.7.1 Closing parentheses and commas 1043
69.7.2 Usual infix operators L. 1045
69.7.3 Juxtapositiono 1046
69.7.4 Multi-character cases Lo oL 1046
69.7.5 Ternary operator Lo Lo o 1047
69.7.6 CompariSons i e e e 1047

69.8 Tools for functions 1049
69.9 Messages 1052
70 13fp-assign implementation 1053
70.1 Assigning values 1053
70.2 Updating values 1054
70.3 Showing values L 1054
70.4 Some useful constants and scratch variables L. 1055

xXviii

71 13fp-logic implementation
71.1 Syntax of internal functions
T1.2 Tests . . . o o o e e
71.3 Comparison e
71.4 Floating point expression loops
715 Extremao e
71.6 Boolean operations e
71.7 Ternary operator Lo e

72 13fp-basics implementation
72.1 Addition and subtraction oL oo oo
72.1.1 Sign, exponent, and special numbers
72.1.2 Absolute additiono
72.1.3 Absolute subtractiono Lo
72.2 Multiplication Lo
72.2.1 Signs, and special numbers
72.2.2 Absolute multiplication
72.3 Division e e e e e
72.3.1 Signs, and special numberso
7232 Workplan oL L
72.3.3 Implementing the significand division
T2.4 Square Tooto e e e e e e
72.5 About the sign and exponento
72.6 Operations on tuples L

73 13fp-extended implementation
73.1 Description of fixed point numbers
73.2 Helpers for numbers with extended precision
73.3 Multiplying a fixed point number by a short one
73.4 Dividing a fixed point number by a small integer
73.5 Adding and subtracting fixed points L.
73.6 Multiplying fixed points L o o
73.7 Combining product and sum of fixed points
73.8 Extended-precision floating point numberso
73.9 Dividing extended-precision numberso
73.10 Inverse square root of extended precision numbers
73.11 Converting from fixed point to floating point

74 13fp-expo implementation
74.1 Logarithm e
74.1.1 Workplan
74.1.2 Some constants e e
74.1.3 Sign, exponent, and special numberso
74.1.4 AbsoluteIn
74.2 Exponential
74.2.1 Sign, exponent, and special numbers
T4.3 Power. e e e e e
74.4 Factorial e e

Xix

75 13fp-trig implementation 1140

75.1 Direct trigonometric functions 1141
75.1.1 Filtering special caseso oL 1141
75.1.2 Distinguishing small and large arguments 1144
75.1.3 Small arguments oL Lo 1145
75.1.4 Argument reduction in degrees 1145
75.1.5 Argument reduction in radians 1146
75.1.6 Computing the power series 1154
75.2 Inverse trigonometric functions oL 1156
75.2.1 Arctangent and arccotangent 1157
75.2.2 Arcsine and arccosineo oo 1162
75.2.3 Arccosecant and arcsecanto 1164

76 13fp-convert implementation 1166
76.1 Dealing with tuples L oo oo 1166
76.2 Trimming trailing zeros Lo oo 1166
76.3 Scientific notation 1167
76.4 Decimal representationo 1168
76.5 Token list representation oo 1170
76.6 Formatting L e 1171
76.7 Convert to dimension or integer oL 1171
76.8 Convert from a dimension L L oL 1172
76.9 Useandeval 1173
76.10 Convert an array of floating points to a comma list 1174

77 13fp-random implementation 1176
77.1 Engine supporto 1176
77.2 Random floating pointo oL o 1179
77.3 Random integer 1180

78 I3fparray implementation 1185
78.1 Allocating arrays 1185
78.2 Array items 1186

79 13cctab implementation 1190
79.1 Variables 1190
79.2 Allocating category code tables 1191
79.3 Saving category code tables L o oL 1192
79.4 Using category code tables L. 1193
79.5 Category code table conditionals 1198
79.6 Constant category code tables oL 1199
T9.7 MeSSAZES « . v v v e e e e e e e e e 1201

80 13unicode implementation 1203
80.1 User functions L 1203
80.2 Dataloader 1207

81 13text implementation

81.1 Internal auxiliaries L oL
81.2 Utilities e e e e
81.3 Codepoint utilities e
81.4 Configuration variables oL 0oL
81.5 Expansion to formatted text L Lo
82 I3text-case implementation
82.1 Casechanging
83 I3text-map implementation
83.1 Mapping totext
84 13text-purify implementation
84.1 Purifying texto
84.2 Accent and letter-like data for purifying text
85 I13box implementation
85.1 Support code
85.2 Creating and initialising boxes oo oL
85.3 Measuring and setting box dimensionso oL
85.4 Using boxes e
85.5 Box conditionals
85.6 The last box inserted L
85.7 Constant boxes L L
85.8 Scratch boxes L
85.9 Viewing box contents L oo
85.10 Horizontal mode boxes o
85.11 Vertical mode boxes
85.12 Affine transformations L
85.13 Viewing part of abox oL L o
86 13coffins implementation
86.1 Coflins: data structures and general variables
86.2 Basic coffin functions Lo
86.3 Measuring coffins L. o
86.4 Coffins: handle and pole management
86.5 Coffins: calculation of pole intersections
86.6 Affine transformationso L oL
86.7 Aligning and typesetting of coffins Lo
86.8 Coffin diagnostics L
86.9 MeSSAZES . . . v o e e e e e e e e e e e

XX1

87 13color implementation 1346

87.1 Basics 1346
87.2 Predefined color names 1347
87.3 Setup o e 1348
87.4 Utility functions 1348
87.5 Model conversion 1349
87.6 Color expressionsl 1350
87.7 Selecting colors (and color models) 1359
87.8 Math color e e 1361
87.9 Fill and stroke color Lo 1364
87.10 Defining named colors L oo 1364
87.11 Exporting colors L 1367
87.12 Additional color models 1369
87.13 Applying profiles 1384
87.14 Diagnosticso 1384
8T.15 MeSsages v v v vt e e 1385

88 Deprecated functions 1389

89 I13pdf implementation 1390
89.1 Compression v v i e e e 1390
89.2 Objects L L 1391
89.3 Version 1391
89.4 Pagesize 1393
89.5 Destinations Lo 1393
89.6 PDF Page size (media box) L. 1393
89.7 Deprecated functions e 1394

90 I3candidates implementation 1395
90.1 Additions to I3seq 1395
90.2 Additions to I3tl 1395
90.2.1 Building a token list o L. 1395

91 I3deprecation implementation 1400
91.1 Patching definitions to deprecate L. 1400
91.2 Removed functions L 1402
91.3 Deprecated I3basics functions Lo Lo 1406
91.4 Deprecated 13prg functions Lo L Lo 1406
91.5 Deprecated [3str functions 1407
91.6 Deprecated I3seq functions 1407
91.7 Deprecated I3sys functions L o oo 1408
91.8 Deprecated 13tl functions oo 1408
91.9 Deprecated I3token functions Lo 1409

92 13debug implementation 1411

Index 1434

xxii

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \1let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf!.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

LIf a primitive offers a functionality not yet in the kernel, programmers and users are encouraged
to write to the LaTeX-L mailing list (mailto:LATEX-L@listserv.uni-heidelberg.de) describing their
use-case and intended behaviour, so that a possible interface can be discussed. Temporarily, while an
interface is not provided, programmers may use the procedure described in the 13styleguide.pdf.

mailto:LATEX-L@listserv.uni-heidelberg.de

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module? name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

2The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_(type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.> On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

3TgEXnically, functions with no arguments are \long while token list variables are not.

\seq_new:N
\seq_new:c

\cs_to_str:N %

\seq_map_function:NN v

\sys_if_engine_xetex:TF *

\1_tmpa_t1l

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {(true code)} {(false code)}
The underlining and italic of TF indicates that three functions are available:

e \sys_if_engine_xetex:T

e \sys_if_engine_xetex:F

e \sys_if_engine_xetex:TF
Usually, the illustration will use the TF variant, and so both (true code) and (false code)
will be shown. The two variant forms T and F take only (true code) and (false code),
respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wunless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BETEX3

The TEX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

Chapter 2

The I3bootstrap package
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2: and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
BTEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/{day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then it will be prefixed with v in the
package identifier line.

\GetIdInfo

Updated: 2012-06-04

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The I13names package
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part 111
Programming Flow

12

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

13

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the \showgroups primitive.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

14

\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npx
cpx

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npx
cpx

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npx
cpx

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or or e-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

15

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

16

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or e-type argument. The definition is global
and an error results if the {function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}
\cs_new_protected_nopar: (cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

17

\cs_set_nopar:Nn
\cs_set_nopar: (cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected: (cn|Nx|cx)

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {<code>}
\cs_set_protected_nopar:(cn|Nx|cx)

\cs_gset:Nn
\cs_gset:(cn|Nx|cx)

\cs_gset_nopar:Nn
\cs_gset_nopar: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

18

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {{code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count :NNnn \cs_generate_from_arg_count:NNnn (functi on> <creator>
\cs_generate_from_arg_count:(NNno|cNnn|Ncnn) {(number)} {(code)}

Updated: 2012-01-14

\cs_new_eq:NN
\cs_new_eq: (Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|ec)

Uses the (creator) function (which should have signature Npn, for example \c¢s_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)

\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)

\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (csi) (cs2)

\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

19

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N *
\cs_meaning:c *

Updated: 2011-12-22

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

4.3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

4.3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1._my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

20

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

*
*
*
*

New: 2012-11-10

\cs:w
\cs_end:

\cs_to_str:N

*
*

*

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc }
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

21

\cs_split_function:N *

New: 2018-04-06

\cs_prefix_spec:N *

New: 2019-02-27

\cs_parameter_spec:N =%

New: 2022-06-24

4.4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

22

\cs_replacement_spec:N * \cs_replacement_spec:N (token)

\cs_replacement_spec:c

*

If the (token) is a macro, this function leaves the replacement text in input stream as

New: 2019-02-27 3 string of character tokens of category code 12 (with spaces having category code 10).

\use:n
\use:nn
\use:nnn
\use :nnnn

*
*
*
*

Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (token) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {{group1)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn {(group:)} {(group:)} {(groups)} {{groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } %}
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

23

\use_i:nn {(arg:i)} {(arg:)}

\use_i:nnn {(argi)} {(arg:)} {(args:)}

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

\use_i:nnnnn {(argi)} {(arg:)} {(args)} {(args)} {(args)}

\use_i:nnnnnn {(arg:)} {(argz:)} {(args)} {(args)} {{args)} {(arge)}

\use_i:nnnnnnn {(argi)} {(args)} {(args)} {({args)} {({args)} {({args)} {(argr)}
\use_i:nnnnnnnn {(arg:)} {(arg:)} {({args)} {(args)} {({args)} {(arges)} {({argr)}
{(args)}

\use_i:nnnnnnnnn {(arg:)} {(arge)} {(args)} {(args)} {(args)} {(args)} {(arg:)}
{(args)} {(argo)}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn
\use_ii:nn
\use_i:nnn
\use_ii:nnn
\use_iii:nnn
\use_i_ii:nnn
\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn
\use_i:nnnnn
\use_ii:nnnnn
\use_iii:nnnnn
\use_iv:nnnnn
\use_v:nnnnn
\use_i :nnnnnn
\use_ii:nnnnnn
\use_iii:nnnnnn
\use_iv:nnnnnn
\use_v:nnnnnn
\use_vi:nnnnnn
\use_i :nnnnnnn
\use_ii:nnnnnnn
\use_iii:nnnnnnn
\use_iv:nnnnnnn
\use_v:nnnnnnn
\use_vi:nnnnnnn
\use_vii:nnnnnnn
\use_i:nnnnnnnn
\use_ii:nnnnnnnn
\use_iii:nnnnnnnn
\use_iv:nnnnnnnn
\use_v:nnnnnnnn
\use_vi:nnnnnnnn
\use_vii:nnnnnnnn
\use_vii:nnnnnnnn
\use_i :nnnnnnnnn
\use_ii:nnnnnnnnn
\use_iii:nnnnnnnnn
\use_iv:nnnnnnnnn
\use_v:nnnnnnnnn
\use_vi:nnnnnnnnn
\use_vii:nnnnnnnnn
\use_viii:nnnnnnnnn
\use_ix:nnnnnnnnn

L S S . S D S D D S N i R, D, D P S P P P, P S S R s s S, S, S S P D S . P S i e D P S S o

24

\use_i_ii:nnn *

\use_ii_i:nn *

New: 2019-06-02

\use_none:n *
\use_none:nn *
\use_none:nnn *
\use_none:nnnn *
\use_none:nnnnn *
\use_none:nnnnnn *
\use_none:nnnnnnn *
\use_none:nnnnnnnn %
\use_none:nnnnnnnnn *

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(argz)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to E'TEX 2¢’s \@gobble, \@gobbbletwo, etc.

\use:e {(expandable tokens)}

Fully expands the (token list) in an e-type manner, in which parameter character (usu-
ally #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

25

\use_none_delimit_by_q_nil

W * \use_none_delimit_by_q nil:w (balanced text) \q_nil

\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w (balanced text) \q_stop
\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w <balanced text)

\gq_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw

* \use_i_delimit_by_qg_nil:nw {(inserted tokens)} (balanced text)

\use_i_delimit_by_q_stop:nw * \g_nil
\use_i_delimit_by_q_recursion_stop:nw x \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6

Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

26

\cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if free:cTF

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (csi1) (cs2)

\cs_if_eq:NNTF (csi) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of (control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:NTF).

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if_int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_.

27

\if_true:
\if_false:
\else:

\fi:
\reverse_if:N

*
*
*
*
*

\if _meaning:w

*

\if:w
\if _charcode:w
\if_catcode:w

*
*
*

\if_cs_exist:N
\if_cs_exist:w

*
*

\if_mode_horizontal:
\if_mode_vertical:
\if_mode_math:
\if_mode_inner:

*
*
*
*

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg,) and (arge) are the same, otherwise it
executes (false code). (arg:) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TgXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:
\if_catcode:w (tokeni) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:

\if _cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are TEX’s \ifdefined and \ifcsname, respectively.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

28

\mode_leave_vertical:

New: 2017-07-04

\debug_on:n

\debug_off:n

New: 2017-07-16

Updated: 2023-05-23

\debug_suspend:
\debug_resume:

New: 2017-11-28

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the KTEX 2¢
\leavevmode approach, no box is used by the method implemented here.

4.8 Debugging support

\debug_on:n { (comma-separated list) }
\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (list) are

e check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes soon-to-be-deprecated commands produce errors;
e log-functions that logs function definitions;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors or warnings. These pairs of commands can be nested. This can be used around
pieces of code that are known to fail checks, if such failures should be ignored. See for
instance 13coffins.

29

Chapter 5

The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

30

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

31

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the {original argument specifier) if
these are not already defined; entries which correspond to existing functions are silently
ingored. For each (variant) given, a function is created that expands its arguments as
detailed and passes them to the (parent control sequence). So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the (parent control sequence) is already
defined. (This is only enforced if debugging support check-declarations is enabled.)
If the (parent control sequence) is protected or if the (variant) involves any x argument,
then the (variant control sequence) is also protected. The (variant) is created globally, as
is any \exp_args:N(variant) function needed to carry out the expansion. There is no
need to re-apply \cs_generate_variant:Nn after changing the definition of the parent
function: the variant will always use the current definition of the parent. Providing
variants repeatedly is safe as \cs_generate_variant:Nn will only create new definitions
if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N, n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

32

\exp_args_generate:n \exp_args_generate:n {(variant argument specifiers)}

New: 2018-04-04 Defines \exp_args:N(variant) functions for each (variant) given in the comma list
Updated: 2019-02-08 {(wariant argument specifiers)}. Each (variant) should consist of the letters N, ¢, n, V, v,
o, f, e, %, p and the resulting function is protected if the letter x appears in the (variant).

This is only useful for cases where \cs_generate_variant:Nn is not applicable.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

33

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both £- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

e Arguments that should consist of single tokens N, c, V, or v should come first among
these.

e Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, c, V, and v, and, in the last
position, o, £, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

34

\exp_args:Nc *
\exp_args:cc *

\exp_args:No *

\exp_args:NV *

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf =

\exp_args:Nx

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

35

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNc
NNo
NNV
NNv
NNe
NNf
Ncc
Nco
NcV
Ncv
Ncf
NVV

b S S . TR iR R b S S o

Updated: 20

18-05-15

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nno
NnV
Nnv
Nne
Nnf
Noc
Noo
Nof
NVo
Nfo
Nff
Nee

b R D D S S S D S . P P o

Updated: 20

18-05-15

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
Nccc
NcNc
NcNo
Ncco

* % ot o X o X

5.5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokens:)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokenz) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

36

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVVv
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo
Neee

X X X > b ot ot X X X X o ok o Xt X

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx
NNnx
NNox
Nccx
Ncnx
Nnnx
Nnox
Noox

New: 2015-08-12

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NNf
Nco
NcV
Nno
Noo
Nfo

NNNo
NNNV
NNNfE
NnNo

b . P D T S S D D . D S i i

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

5.7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokens:)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

37

\exp_last_unbraced:Nx

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

\exp_not:N *

\exp_not:c *

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out us-
ing an appropriate argument specifier variant or the appropriate \exp_args:N(variant)
function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument or the first token in an o or e or £ argument.

TgXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an £-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

38

\exp_not:n *

\exp_not:o *

\exp_not:V *

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_f: «*

Updated: 2011-06-03

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npx), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type or e-type expansion, it retains its form, but when
typeset it produces the underlying space ().

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to

39

\exp:w *
\exp_end: *

New: 2015-08-23

calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w (expandable tokens) \exp_end:

Expands (exzpandable-tokens) until reaching \exp_end: at which point expansion stops.
The full expansion of (expandable tokens) has to be empty. If any token in {expandable
tokens) or any token generated by expanding the tokens therein is not expandable the
expansion will end prematurely and as a result \exp_end: will be misinterpreted later
on.*

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you

may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (ezpandable tokens), but this should
not be relied upon.

4Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

40

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all £-type expansions a space ending the expansion gets removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.”

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_£f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

5In this particular case you may get a character into the output as well as an error message.

41

P

PP P A Y

TddNthooad =8B

::0_unbraced
::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced

::V_unbraced

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
ITREX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general INTEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

42

Chapter 6

The I13sort package
Sorting functions

6.1 Controlling sorting

ETEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

43

\sort_return_same: \seq_sort:Nn (seq Var)
\sort_return_swapped: { ... \sort_return_same: or \sort_return_swapped: ... }

New: 2017-02-06 Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

44

Chapter 7

The I13tl-analysis package:
Analysing token lists

This module provides functions that are particularly useful in the I3regex module for
mapping through a token list one (token) at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in I3token finds tokens in the input stream instead. In both cases the user
provides (inline code) that receives three arguments for each (token):

o (tokens), which both o-expand and x-expand to the (token). The detailed form of
(tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if it
is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the (token)
(0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: alignment tab,
6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other, D: active).
This can be converted to an integer by writing "(catcode).

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:N \tl_analysis_show:n {(token list)}
\tl_analysis_show:n \tl_analysis_log:n {(token list)}
\tl_analysis_log:N

, Displays to the terminal (or log) the detailed decomposition of the (token list) into tokens,
\tl_analysis_log:n

showing the category code of each character token, the meaning of control sequences and
New: 2021-05-11 active characters, and the value of registers.

\tl_analysis_map_inline:nn \tl_analysis_map_inline:nn {(token list)} {(inline function)}
\tl_analysis_map_inline:Nn

Applies the (inline function) to each individual (token) in the (token list). The (inline

New: 2018-04-09 fynction) receives three arguments as explained above. As all other mappings the map-
Updated: 2022-03-26 ping js done at the current group level, i.e. any local assignments made by the (inline
function) remain in effect after the loop.

45

Chapter 8

The 13regex package: Regular
expressions in TEpX

The 13regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \1_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \1_foo_regex
\regex_set:Nn \1_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \1_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] . *), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

46

8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

[abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

[A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

\c{[A-Za-z] *} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]1?\d+ matches an explicit integer with at most one sign.

I\N+H\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

I\NH\-\UT* (\d@+1\d*\ .\d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

O\H\-\T* (\d+ I \d*x\ . \d+) _*x ((?i)pt |in| [cemlm|ex| [bslp| [dnld| [pcnlc) \ *
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

O\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\L*ke [\+\-_I*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

\+\-\1* (\d+|\cC.) \L* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
NN\ O NG\ * CON\=%/] [\+\=-\ (1 *\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

47

8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

o mnon-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(; \), \?, \.; \");

« spaces should always be escaped (even in character classes);

« any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regex)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character properties.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \~"I]: space and tab.

\s Any space character, equivalent to [\ \""I\""J\""L\""M].

48

\v Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.
\H Any token not matched by \h.
\N Any token other than the \n character (hex 0A).
\S Any token not matched by \s.
\V Any token not matched by \v.
\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
x-y Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:"(name):] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is 1 then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).
? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.

+ 1 or more, greedy.

49

+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|BIC Either one of A, B, or C, investigating A first.
(...) Capturing group.
(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
e B for begin-group tokens;

e E for end-group tokens;

50

e M for math shift;
o T for alignment tab tokens;
o P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
« S for spaces;
e L for letters;
e 0 for others; and
o A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \c0(abc) matches abc where each character has category other.°

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LS0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [*0]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches abxcd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(var name)} matches the exact contents (both character codes and cate-
gory codes) of the variable \(var name), which are obtained by applying \exp_not:v
{(var name)} at the time the regular expression is compiled. Within a \c{. ..} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{1_tmpa_regex}D matches the tokens A and

6This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\c0(?7:abc).

o1

D separated by something that matches the regular expression \1_tmpa_regex. This
behaves as if a non-capturing group were surrounding \1_tmpa_regex, and any group
contained in \1_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \1_tmpa_regex has value B|C, then A\ur{1_tmpa_regex}D is equiv-
alent to A(?7:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \1_-
mymodule_BC_t1 contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_t1} D }
\regex_show:n{ AB | CD }

8.1.6 Miscellaneous

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A-Z and a—z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?7-i). For instance, in
(71) (a(?-1)blc)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i) [\?7-B] is equivalent to [\7@ABab]
(and differs from the much larger class [\?-b]), and (?i) [Taeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?7i)\u{l_foo_tl1}\d\d[[:1lower:]].

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

e \O0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

52

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c(category){character) (see below);
o \u{(tl var name)?} inserts the contents of the (¢l var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?1llo) . } { (\0--\1) } \1_my_tl

results in \1_my_t1 holding H(ell--el) (o,--0) w(or--o) (1d--1)!

The submatches are numbered according to the order in which the opening paren-
thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code regime at the time where the replacement is made,
with two exceptions:

« space characters (with character code 32) inserted with \., or \x20 or \x{20} have
category code 10 regardless of the prevailing category code regime;

o if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{(text)} Produces the control sequence with csname (text). The (text) may contain refer-
ences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{{var name)} allows to insert the contents of the variable with
name (var name) directly into the replacement, giving an easier control of category codes.
When nested in \c{...} and \u{...} constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \1_my_tl { one , two , one , one }
\regex_replace_all:nnN { [~,]1+ } { \u{l_my_\O_t1} } \1_my_tl

53

\regex_new:N

New: 2017-05-26

\regex_set:Nn
\regex_gset:Nn

New: 2017-05-26

\regex_const:Nn

New: 2017-05-26

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26
Updated: 2021-04-29

results in \1_my_t1 holding first, \emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary
category codes. For instance

\tl_clear:N \1_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \1_tmpa_tl

results in \1_tmpa_t1 containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the [3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declaration
is global. The (regex var) is initially such that it never matches.

\regex_set:Nn (regex var) {(regex)}
Stores a compiled version of the (regular expression) in the (regex var). The assignment

is local for \regex_set:Nn and global for \regex_gset:Nn. For instance, this function
can be used as

\regex_new:N \1_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

\regex_const:Nn (regex var) {(regex)}

Creates a new constant (regez var) or raises an error if the name is already taken. The
value of the (regex var) is set globally to the compiled version of the (reqular expression).

\regex_show:n {(regex)}

\regex_log:n {(regex)}

Displays in the terminal or writes in the log file (respectively) how I3regex interprets the
(regex). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)
+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

54

\regex_match:nnTF
\regex_match:NnTF

New: 2017-05-26

\regex_count :nnN
\regex_count :NnN

New: 2017-05-26

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

8.4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_match:nnTF {(regex)} {(token 1list)} {(true code)} {(false code)}

Tests whether the (reqular expression) matches any part of the (token list). For instance,

\regex_match:nnTF { b [cdel* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dgq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_count:nnN {(regex)} {(token list)} (int var)

Sets (int var) within the current TEX group level equal to the number of times (regular
expression) appears in (token list). The search starts by finding the left-most longest
match, respecting greedy and lazy (non-greedy) operators. Then the search starts again
from the character following the last character of the previous match, until reaching the
end of the token list. Infinite loops are prevented in the case where the regular expression
can match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

\regex_match_case:nnTF
{

{(regex1)

{(regex2)

} {(code case1)}

} {(code cases)?}
{(regexn)} {{code casen)}

} {(token list)}

{(true code)} {(false code)}

Determines which of the (regular expressions) matches at the earliest point in the (token
list), and leaves the corresponding (code;) followed by the (true code) in the input stream.
If several (regex) match starting at the same point, then the first one in the list is selected
and the others are discarded. If none of the (regex) match, the (false code) is left in the
input stream. Each (regex) can either be given as a regex variable or as an explicit regular
expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then the corresponding (code) is used and everything else
is discarded, while if none of the (regez) match at a given position then the next starting
position is attempted. If none of the (regex) match anywhere in the (token list) then
nothing is left in the input stream. Note that this differs from nested \regex_match:nnTF
statements since all (regezr) are attempted at each position rather than attempting to
match (regex;) at every position before moving on to (regezs).

55

\regex_extract_once:nnN
\regex_extract_once:nnNTF
\regex_extract_once:NnN
\regex_extract_once:NnNTF

New: 2017-05-26

\regex_extract_all:nnN
\regex_extract_all:nnNTF
\regex_extract_all:NnN
\regex_extract_all:NnNTF

New: 2017-05-26

8.5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token 1list)} (seq var) {(true code)} {(false
code)}

Finds the first match of the (regular expression) in the (token list). If it exists, the match
is stored as the first item of the {seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. The (seq var) is assigned locally. If
there is no match, the (seq var) is cleared. The testing versions insert the (true code)
into the input stream if a match was found, and the (false code) otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \1_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \1_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n — 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds all matches of the (regular expression) in the (token list), and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The (seq var) is assigned locally. If there is no match, the
(seq var) is cleared. The testing versions insert the (true code) into the input stream if
a match was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

56

\regex_split:nnN
\regex_split:nnNTF
\regex_split:NnN
\regex_split:NnNTF

New: 2017-05-26

\regex_replace_once:nnN
\regex_replace_once:nnNTF
\regex_replace_once:NnN
\regex_replace_once:NnNTF

New: 2017-05-26

\regex_replace_all:nnN
\regex_replace_all:nnNTF
\regex_replace_all:NnN
\regex_replace_all:NnNTF

New: 2017-05-26

\regex_split:nnN {(regular expression)} {(token list)} (seq var)
\regex_split:nnNTF {(regular expression)} {(token list)} (seq var) {(true code)}
{(false code)}

Splits the (token list) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to (seq var) is
local. If no match is found the resulting (seq var) has the (token list) as its sole item. If
the (regular expression) matches the empty token list, then the (token list) is split into
single tokens. The testing versions insert the (¢true code) into the input stream if a match
was found, and the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1l_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

8.6 Replacement

\regex_replace_once:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regular expression)} {(replacement)} (tl1 var) {(true
code)} {(false code)}

Searches for the (regular expression) in the contents of the (¢l var) and replaces the first
match with the (replacement). In the (replacement), \O represents the full match, \1
represent the contents of the first capturing group, \2 of the second, etc. The result is
assigned locally to (tl var).

\regex_replace_all:nnN {(regular expression)} {(replacement)} (tl1 var)
\regex_replace_all:nnNTF {(regular expression)} {(replacement)} (t1 var) {(true
code)} {(false code)’}

Replaces all occurrences of the (regular expression) in the contents of the (¢ wvar) by
the (replacement), where \O represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (¢l var).

57

\regex_replace_case_once:nN \regex_replace_case_once:nNTF
\regex_replace_case_once:nNTF {

Now: 2022-01-10 {(regexﬁi E(replacementl)}

{(regex2)} {(replacements)}

:[<'1;egexn>} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces the earliest match of the regular expression (7| (regez;)|... |(regex,)) in the
(token list variable) by the (replacement) corresponding to which (regex;) matched, then
leaves the (true code) in the input stream. If none of the (regex) match, then the (¢l var)
is not modified, and the (false code) is left in the input stream. Each (regex) can either
be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement) as
described for \regex_replace_once:nnN. This is equivalent to checking with \regex_-
match_case:nn which (regez) matches, then performing the replacement with \regex_-
replace_once:nnN.

\regex_replace_case_all:nN \regex_replace_case_all:nNTF
\regex_replace_case_all:nNTF {

{(regex1)} {(replacementq)}

————— A
New: 2022-01-10 {(regex2)} {(replacements)}

{(regexn)} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces all occurrences of all {regex) in the (token list) by the corresponding (replacement).
Every match is treated independently, and matches cannot overlap. The result is assigned
locally to (¢l var), and the {true code) or (false code) is left in the input stream depending
on whether any replacement was made or not.

In detail, for each starting position in the (token list), each of the (regez) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement),
and the search resumes at the position that follows this match (and replacement). For
instance

\tl_set:Nn \1_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN

{
{ [A-Za-z]+ } { “\0’’ }
{\vo}r{-——-—-1%
{ .3 { N0l }
} \1_tmpa_tl
results in \1_tmpa_t1 having the contents ¢ ‘Hello’’---[,]1[,] ¢ ‘world’’---[!]. Note

in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

58

\1_tmpa_regex
\1_tmpb_regex

New: 2017-12-11

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

8.7 Scratch regular expressions

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any I¥TX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8.8 Bugs, misfeatures, future work, and other possi-
bilities
The following need to be done now.
e Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Clean up the use of messages.
e Cleaner error reporting in the replacement phase.
e Add tracing information.
e Detect attempts to use back-references and other non-implemented syntax.
o Test for the maximum register \c_max_register_int.

e Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

o Shift arrays so that the useful information starts at position 1.

e Only build \c{. ..} once.

o Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

o If possible, when a state is reused by the same thread, kill other subthreads.

59

Use an array rather than \g__regex_balance_t1 to build the function __regex_-
replacement_balance_one_match:n.

Reduce the number of epsilon-transitions in alternatives.

Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

Optimize groups with no alternative.
Optimize states with a single __regex_action_free:n.

Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

Optimize the use of \int_step_. .. functions.

Groups don’t capture within regexes for csnames; optimize and document.
Better “show” for anchors, properties, and catcode tests.

Does \K really need a new state for itself?

When compiling, use a boolean in_cs and less magic numbers.

Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]>
(x..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ~, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of PCRE or Perl may or may not be implemented.

e Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \t1_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

60

o Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

e Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

e Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

e Recursion: this is a non-regular feature.

e Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

e Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

e Backtracking control verbs: intrinsically tied to backtracking.

e \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, ...), making it harder to produce useful error message.

o \cx, similar to TEX’s own \~"x.
e Comments: TEX already has its own system for comments.

e \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

e \C single byte in UTF-8 mode: XHTEX and LuaTgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

61

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_gset_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn

Updated: 2022-11-01

Chapter 9

The 13prg package
Control structures

Conditional processing in ITEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if _predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {({code)}
\prg_new_conditional:Nnn \(name):{arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions check for
existing definitions and perform assignments globally (c¢f. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of (conditions), which should be
one or more of p, T, F and TF.

62

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec)
\prg_set_protected_conditional:Npnn (parameters) {(conditions)} {(code)}
\prg_gset_protected_conditional:Npnn \prg_new_protected_conditional:Nnn \(name):(arg spec)
\prg_new_protected_conditional:Nnn {(conditions)} {(code)}
\prg_set_protected_conditional:Nnn

\prg_gset_protected_conditional:Nnn

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set version do not (¢f. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of (conditions), which should be one or more of T, F and TF (not

p)-
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

e \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

e \(name):(arg spec)T — a function with one more argument than the original {arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

e \(name):(arg spec)F — a function with one more argument than the original {arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

o \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if _meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

63

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the {conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(name;):(arg specz)
\prg_set_eq_conditional:NNn {(conditions)}
\prg_gset_eq_conditional:NNn

Updated: 2023-05-26

\prg_return_true: x
\prg_return_false: x

These functions copy a family of conditionals. The new version checks for existing defin-
itions (c¢f. \cs_new_eq:NN) whereas the set version does not (c¢f. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn \(name):(arg spec)

variant argument specifiers condition specifiers
New: 2017-12-12 U g P)+ D)33

Defines argument-specifier variants of conditionals. This is equivalent to running \cs_-
generate_variant:Nn (conditional) {{variant argument specifiers)} on each (conditional)
described by the (condition specifiers). These base-form (conditionals) are obtained
from the (name) and (arg spec) as described for \prg_new_conditional :Npnn, and they
should be defined.

9.2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting

64

\bool_new:N

\bool_new:c

\bool_const:Nn
\bool_const:cn

New: 2017-11-28

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

New: 2018-05-10

the logical operations And, Or, Not, efc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, ITEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

\bool_const:Nn (boolean) {(boolexpr)}

Creates a new constant (boolean) or raises an error if the name is already taken. The
value of the (boolean) is set globally to the result of evaluating the (boolexpr).

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (boolean;) (booleans)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_set_inverse:N (boolean)

Toggles the (boolean) from true to false and conversely: sets it to the inverse of its
current value.

65

\bool_if p:N «*
\bool_if_p:c =«
\bool_if:NTF *
\bool_if:cTF *

Updated: 2017-07-15

\bool_to_str:N %
\bool to_str:c *
\bool_to_str:n *

New: 2021-11-01

\bool_show:N
\bool_show:c

New: 2012-02-09
Updated: 2021-04-29

\bool_show:n

New: 2012-02-09
Updated: 2017-07-15

\bool_log:N
\bool_log:c

New: 2014-08-22
Updated: 2021-04-29

\bool_log:n

New: 2014-08-22
Updated: 2017-07-15

\bool_if_exist_p:N x
\bool_if_exist_p:c *
\bool_if_exist:NTF *
\bool_if_exist:cTF *

New: 2012-03-03

\c_true_bool
\c_false_bool

\1_tmpa_bool
\1_tmpb_bool

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_to_str:N (boolean)
\bool_to_str:n (boolean expression)

Expands to the letters true or false depending on the logical truth of the (boolean) or
(boolean expression).

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.

\bool_if_exist_p:N (boolean)
\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

9.2.1 Constant and scratch booleans

Constants that represent true and false, respectively. Used to implement predicates.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

66

\g_tmpa_bool A scratch boolean for global assignment. It is never used by the kernel code, and so is
\g_tmpb_bool gafe for use with any IATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

9.3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and || evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TgXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq meaning p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } ’ skipped
}
}
{ ! \int_compare_ p:n { 2 =4 } }

67

\bool_if _p:n «*
\bool_if:nTF *

Updated: 2017-07-15

\bool_lazy_all_p:n *
\bool_lazy_all:nTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_any_p:n x
\bool_lazy_any:nTF x

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_or_p:nn %
\bool_lazy_or:nnTF =%

New: 2015-11-15
Updated: 2017-07-15

\bool_not_p:n *

Updated: 2017-07-15

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}
\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpri)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)}

} {(boolexprs)} --- {(boolexpry)} }
} {(boolexprs)} --- {(boolexprn)} } {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean

expressions).

\bool_lazy_and_p:nn {(boolexpr:i)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexprz)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

\bool_lazy_any_p:n { {(boolexpr;)
\bool_lazy_any:nTF { {(boolexpri)
{(false code)?}

} {(boolexprs)} --- {(boolexpry)} }

} {(boolexprs)} --- {(boolexprn)} } {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two (boolean

expressions).

\bool_lazy_or_p:nn {(boolexpr:)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpr:i)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ((boolean expression)) within a boolean expression.

68

\bool_xor_p:nn *
\bool_xor:nnTF x

New: 2018-05-09

\bool_do_until:Nn %
\bool_do_until:cn %

Updated: 2017-07-15

\bool_do_while:Nn 3¢
\bool_do_while:cn 3¢

Updated: 2017-07-15

\bool_until_do:Nn ¥
\bool _until _do:cn %%

Updated: 2017-07-15

\bool_while_do:Nn
\bool_while _do:cn %

Updated: 2017-07-15

\bool_do_until:nn 3

Updated: 2017-07-15

\bool_do_while:nn

Updated: 2017-07-15

\bool_until_do:nn 3

Updated: 2017-07-15

\bool_xor_p:nn {(boolexpr:)} {(boolexprs)}
\bool_xor:nnTF {(boolexpri)} {(boolexpr:)} {(true code)} {(false code)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

9.4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream again
and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the {(code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {(boolean expression) is true.

69

\bool_while_do:nn 3

Updated: 2017-07-15

\bool_case:n *
\bool_case:nTF *

New: 2023-05-03

\prg_replicate:nn *

Updated: 2011-07-04

\mode_if_horizontal_p: *
\mode_if_horizontal:TF x

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {boolean expression) is false.

\bool_case:nTF
{
{(boolexpr casei)
{(boolexpr cases)

(code case1)}
(code casez)}

AL
A

{éboolexpr casen)} {(code case,)?}
}
{{true code)}
{(false code)}

Evaluates in turn each of the (boolean expression cases) until the first one that evaluates
to true. The (code) associated to this first case is left in the input stream, followed by
the (true code), and other cases are discarded. If none of the cases match then only the
(false code) is inserted. The function \bool_case:n, which does nothing if there is no
match, is also available. For example

\bool_case:nF

{
{ \dim_compare_p:n { \1__mypkg_wd_dim <= 10pt } }
{ Fits }
{ \int_compare_p:n { \1__mypkg_total_int >= 10 } }
{ Many }
{ \1__mypkg_special_bool }
{ Special }
}
{ No idea! }

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way
b2

similar to some other language’s “if ... elseif ... elseif ... else...”.

9.5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

70

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF x

Updated: 2011-09-05

\mode_if_vertical_p: =
\mode_if_vertical:TF x

\if_predicate:w *

\if_bool:N *

\prg_break_point:Nn *

New: 2018-03-26

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math_p:
\mode_if _math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

9.7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if _bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

9.8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \(type)_map_break: {(code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break:
and \(type)_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the (code) is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

71

\prg_map_break:Nn *

\prg_map_break:Nn \(type)_map_break: {(user code)}

New: 2018-03-26 |

\prg_break_point: *

New: 2018-03-27

\prg_break: «x
\prg_break:n *

New: 2018-03-27

\group_align_safe_begin: «*

\group_align_safe_end: * .

Updated: 2011-08-11

\prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
(type).

For types with mappings defined in the kernel, \(type)_map_break: and \(type)_-
map_break:n are defined as \prg_map_break:Nn \(type)_map_break: {} and the same
with {} omitted.

9.8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break:n {(code)} ... \prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts the (code) in the input stream.

9.9 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

72

Chapter 10

The 13sys package:
System /runtime functions

10.1 The name of the job

\c_sys_jobname_str Constant that gets the “job name” assigned when TEX starts.

New: 2015-09-19

Updated: 2019-10-27 TEXhackers note: This copies the contents of the primitive \jobname. For technical

reasons, the string here is not of the same internal form as other, but may be manipulated using

normal string functions.

10.2 Date and time

\c_sys_minute_int The date and time at which the current job was started: these are all reported as integers.
\c_sys_hour_int

\c_sys_day_int TEXhackers note: Whilst the underlying primitives can be altered by the user, this
\c_sys_month_int interface to the time and date is intended to be the “real” values.

\c_sys_year_int

New: 2015-09-22

73

\sys_if_engine_luatex_p: *
\sys_if_engine_luatex:TF *
\sys_if_engine_pdftex_p: *
\sys_if_engine_pdftex:TF *
\sys_if_engine_ptex_p: *
\sys_if_engine_ptex:TF *
\sys_if_engine_uptex_p: «*
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p: *
\sys_if_engine_xetex:TF «

New: 2015-09-07

\c_sys_engine_str

New: 2015-09-19

\c_sys_engine_exec_str

New: 2020-08-20

\c_sys_engine_format_str

New: 2020-08-20

\c_sys_engine_version_str

New: 2018-05-02

\sys_timer: *

New: 2020-09-24

10.3 Engine

\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u) ptex tests are for e-pI'EX and e-uplEX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pIgX but false for e-upIrX.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex

for BTEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e. the \fmtname).

The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdfTEX and LuaTgX this is of the form

(major).(minor).(revision)
For XHTEX, the form is
(major).{minor)

For PIEX and uplgX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pIEX version, the uplEX version and the

e-pIEX version.
p{major).(minor).(revision)-u{major).(minor)-(epTeX)
where the u part is only present for upIgX.

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2716 seconds).

74

\sys_if_output_dvi_p: *
\sys_if_output_dvi:TF *
\sys_if_output_pdf_p: *
\sys_if_output_pdf:TF *

New: 2015-09-19

\c_sys_output_str

New: 2015-09-19

10.4 Output format

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

The current output mode given as a lower case string: one of dvi or pdf.

10.5 Platform

\sys_if_platform_unix_p: * \sys_if_platform_unix_p:

\sys_if_platform_unix:TF * \sys_if_platform_unix:TF {(true code)} {(false code)}
\sys_if_platform_windows_p: *

\sys_if_platform_windows:TF %

New: 2018-07-27

\c_sys_platform_str

New: 2018-07-27

\sys_rand_seed: *

New: 2017-05-27

\sys_gset_rand_seed:n

New: 2017-05-27

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, 7.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_gset_rand_seed:n {(int expr)}

Globally sets the seed for the engine’s pseudo-random number generator to the (integer
expression). This random seed affects all \. . ._rand functions (such as \int_rand:nn or
\clist_rand_item:n) as well as other packages relying on the engine’s random number
generator. In engines without random number support this produces an error.

TgXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute

228

value is used and any number beyond is divided by an appropriate power of 2. We recommend

using an integer in [0,2%% — 1].

0]

10.7 Access to the shell

\sys_get_shell :nnN

\sys_get_shell:nnN {(shell command)} {(setup)} (t1 var)

\sys_get_shell:nnNTF \sys_get_shell:nnNTF {(shell command)} {(setup)} (tl var) {(true code)} {(false

New: 2019-09-20

code)}

Defines (tl var) to the text returned by the (shell command). The (shell command) is
converted to a string using \tl_to_str:n. Category codes may need to be set appro-
priately via the (setup) argument, which is run just before running the (shell command)
(in a group). If shell escape is disabled, the (¢ var) will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the (shell
command). The \sys_get_shell:nnNTF conditional inserts the true code if the shell
is available and no quote is detected, and the false code otherwise.

\c_sys_shell_escape_int

This variable exposes the internal triple of the shell escape status. The possible values

New: 2017-05-27 &I'€

0 Shell escape is disabled
1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\sys_if_shell_p: * \sys_if_shell _p:
\sys_if_shell:TF x \sys_if_shell:TF {(true code)} {(false code)}

New: 2017-05-27 Performs a check for whether shell escape is enabled. This returns true if either of

restricted or unrestricted shell escape is enabled.

\sys_if_shell_unrest
\sys_if_shell_unrest

ricted_p: x \sys_if_shell_unrestricted_p:
ricted:TF x \sys_if_shell_unrestricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restri
\sys_if_shell_restri

cted_p: % \sys_if_shell_restricted_p:
cted:TF % \sys_if_shell_restricted:TF {(true code)} {(false code)}

New: 2017-05-27

\sys_shell_now:n
\sys_shell_now:x

New: 2017-05-27

\sys_shell_shipout:n
\sys_shell_shipout:x

New: 2017-05-27

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:.

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

76

\sys_load_backend:n

New: 2019-09-12

\sys_ensure_backend:

New: 2022-07-29

\c_sys_backend_str

\sys_load_debug:

New: 2019-09-12

\sys_finalise:

New: 2019-10-06

10.8 Loading configuration data

\sys_load_backend:n {(backend)}

Loads the additional configuration file needed for backend support. If the (backend) is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.

Set to the name of the backend in use by \sys_load_backend:n when issued. Possible
values are

e pdftex

e luatex

e Xetex

e dvips

e dvipdfmx

e dvisvgm

\sys_load_debug:
Load the additional configuration file for debugging support.

10.8.1 Final settings

\sys_finalise:

Finalises all system-dependent functionality: required before loading a backend.

7

Chapter 11

The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by 13msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

11.1 Creating new messages

All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the IXTEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.
Some authors may find the need to include spaces as ~ characters tedious. This can
be avoided by locally reseting the cateogry code of .

78

\char_set_catcode_space:n { ‘\ }
\msg_new:nnn { foo } { bar }

{Some message text using ’#1’ and usual message shorthands \{ \ \ \}.}
\char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters
is the method favored by the team.

\msg_new:nnnn \msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

\BSEDEWIDIR (yontes g (message) for a given (module). The message is defined to first give (text) and

Updated: 2011-08-16 then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error is raised if the
(message) already exists.

\msg_set:nnnn \msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}
\msg_set :nnn
\msg_gset :nnnn
\msg_gset:nnn

Sets up the text for a (message) for a given (module). The message is defined to first
give (text) and then (more text) if the user requests it. If no (more text) is available then
a standard text is given instead. Within (text) and (more text) four parameters (#1 to
#4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn * \msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF * \msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

New: 2012-03-03 Tests whether the (message) for the (module) is currently defined.

11.2 Customizable information for message modules

\msg_module_name:n * \msg_module_name:n {(module)}

New: 2018-10-10 Expands to the public name of the (module) as defined by \g_msg_module_name_prop
(or otherwise leaves the (module) unchanged).

\msg_module_type:n * \msg_module_type:n {(module)}

New: 2018-10-10 Expands to the description which applies to the (module), for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\g_msg_module_name_prop Provides a mapping between the module name used for messages, and that for documen-

New: 2018-10-10 tation.

\g_msg_module_type_prop Provides a mapping between the module name used for messages, and that type of
New: 2018-10-10 module. For example, for X TEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

79

\msg_line_context:

\msg_line_number: x

\msg_fatal_text:n *

\msg_critical_text:n *

\msg_error_text:n *

\msg_warning_text:n x

\msg_info_text:n %

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.
\msg_fatal_text:n {(module)}
Produces the standard text

Fatal Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}
Produces the standard text
Critical Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the {(module) to be included.

\msg_error_text:n {(module)}
Produces the standard text
Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_warning_text:n {(module)}
Produces the standard text
Package (module) Warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

\msg_info_text:n {(module)}

Produces the standard text:
Package (module) Info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

80

\msg_see_documentation_text:n * \msg_see_documentation_text:n {(module)}

Updated: 2018-09-30

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The name of the (module) is produced
using \msg_module_name:n.

11.4 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the x-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

o fatal, ending the TEX run;
e critical, ending the file being input;
e error, interrupting the TEX run without ending it;

e warning, written to terminal and log file, for important messages that may require
corrections by the user;

o note (less common than info) for important information messages written to the
terminal and log file;

e info for normal information messages written to the log file only;

e term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

e none for suppressed messages.

\msg_fatal:nnnnnn \msg_fatal:nnnnnn {(module)} {(message)} {(arg omne)} {(arg two)} {(arg three)}

\msg_fatal :nnxxxx
\msg_fatal:nnnnn
\msg_fatal:nnxxx
\msg_fatal:nnnn
\msg_fatal :nnxx
\msg_fatal:nnn
\msg_fatal:nnx
\msg_fatal:nn

Updated: 2012-08-11

{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

81

\msg_critical:nnnnnn
\msg_critical :nnxxxx
\msg_critical :nnnnn
\msg_critical :nnxxx
\msg_critical:nnnn
\msg_critical :nnxx
\msg_critical:nnn
\msg_critical:nnx
\msg_critical:nn

Updated: 2012-08-11

\msg_error:nnnnnn
\mSg_error :NNXXXX
\msg_error :nnnnn
\msg_error :nnxxx
\msg_error:nnnn
\msg_error :nnxx
\msg_error:nnn
\msg_error:nnx
\msg_error:nn

Updated: 2012-08-11

\msg_warning:nnnnnn
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nnxxx
\msg_warning:nnnn
\msg_warning:nnxx
\msg_warning:nnn
\msg_warning:nnx
\msg_warning:nn

Updated: 2012-08-11

\msg_critical:nnnnnn {(module)} {(message)} {(arg ome)} {({arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

\msg_warning:nnxxxx {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) warning (message), passing (arg one) to (arg four) to the text-creating
functions. The warning text is added to the log file and the terminal, but the TEX run
is not interrupted.

82

\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_note:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn
nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

New: 2021-05-18

\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

\msg_log:nnnnnn
\msg_log:nnxxxx
\msg_log:nnnnn
\msg_log:nnxxx
\msg_log:nnnn
\msg_log:nnxx
\msg_log:nnn
\msg_log:nnx
\msg_log:nn

Updated: 2012-08-11

\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

Updated: 2012-08-11

\msg_note:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

\msg_info:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. For the more common \msg_info:nnnnnn, the information text is added to
the log file only, while \msg_note:nnnnnn adds the info text to both the log file and the
terminal. The TEX run is not interrupted.

\msg_term:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

\msg_log:nnnnnn {(module)} {(message)} {(arg omne)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The output is briefer than \msg_info:nnnnnn, omitting for instance the mod-
ule name. It is added to the log file by \msg_log:nnnnnn while \msg_term:nnnnnn also
prints it on the terminal.

\msg_none:nnnnnn {({module)} {(message)} {(arg omne)} {(arg two)} {(arg three)} {(arg
four)}

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

83

\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

New: 2017-12-04

11.4.1 Messages for showing material

\msg_show:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text is shown on the terminal and the TEX run is interrupted
in a manner similar to \t1_show:n. This is used in conjunction with \msg_show_item:n
and similar functions to print complex variable contents completely. If the formatted
text does not contain >~ at the start of a line, an additional line >~. will be put at the
end. In addition, a final period is added if not present.

\msg_show_item:n

\msg_show_item:nn

\seq_map_function:NN (seq) \msg_show_item:n

*
\msg_show_item_unbraced:n * \prop_map_function:NN (prop) \msg_show_item:nn
*
*

\msg_show_item_unbraced:nn

New: 2017-12-04

Used in the text of messages for \msg_show:nnxxxx to show or log a list of items or
key—value pairs. The output of \msg_show_item:n produces a newline, the prefix >,
two spaces, then the braced string representation of its argument. The two-argument
versions separates the key and value using _,,=>_.,, and the unbraced versions don’t
print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_-
function:NN, \prop_map_function:NN, etc. For example, with a sequence \1_tmpa_seq
containing a, {b} and \c,

\seq_map_function:NN \1_tmpa_seq \msg_show_item:n
would expand to three lines:

>uf{al
>uu{{b}?
>uuf\eu}

11.4.2 Expandable error messages

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

84

\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:

nnnnnn * \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg
mnffff * two)} {(arg three)} {(arg four)}

nnnnn %

nnfff
nnnn
nnff
nnn
nnf
nn

X X ok X ot

New: 2015-08-06
Updated: 2019-02-28

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\: :error then prints “! (module): ”(error message), which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C — A in this order, then the A — B redirection is
cancelled.

85

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two). Each (class) can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_module:nnn {(module)} {(class ome)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

86

Chapter 12

The 13file package
File and I/0O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \1_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input—output stream management

As TgX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in I¥TEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that 1/O operations are global: streams should all be declared with global
names and treated accordingly.

87

\ior_new:
\ior_new:
\iow_new:
\iow_new:

o =0 =

New: 2011-09-26
Updated: 2011-12-27

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

\iow_open:Nn
\iow_open:cn

Updated: 2012-02-09

\ior_shell_open:Nn

New: 2019-05-08

\iow_shell_open:Nn

New: 2023-05-25

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. ...

\ior_open:Nn (stream) {(file name)}

Opeuns (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. If the file is not found, an error is
raised.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The (¢rue code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing clears any
existing content in the file (i.e. writing is not additive).

\ior_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for reading using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \ior_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell:nnNTF.

\iow_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for writing using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \iow_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell:nnNTF.

88

\ior_close:
\ior_close:
\iow_close:
\iow_close:

o =0 =

Updated: 2012-07-31

\ior_show:N

\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N
\iow_log:c

New: 2021-05-11

\ior_show_list:

\ior_log_list:
\iow_show_list:

\iow_log_list:

New: 2017-06-27

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_show:N (stream)
\ior_log:N (stream)
\iow_show:N (stream)
\iow_log:N (stream)

Display (to the terminal or log file) the file name associated to the (read or write) (stream).

\ior_show_list:

\ior_log_list:

\iow_show_list:

\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

12.1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

89

\ior_get:NN
\ior_get:NNTF

New: 2012-06-24
Updated: 2019-03-23

\ior_str_get:NN
\ior_str_get:NNTF

New: 2016-12-04
Updated: 2019-03-23

\ior_get:NN (stream) (token list variable)
\ior_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input (stream) and stores the result locally in the (token list) variable.
The material read from the (stream) is tokenized by TEX according to the category codes
and \endlinechar in force when the function is used. Assuming normal settings, any
lines which do not end in a comment character % have the line ending converted to a
space, so for example input

ab c

results in a token list a_b_,c,. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl1 { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the (stream) is not open
the (tl var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_str_get:NN (stream) (token list variable)
\ior_str_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one line from the file input (stream) and stores the result locally in
the (token list) variable. The material is read from the (stream) as a series of tokens with
category code 12 (other), with the exception of space characters which are given category
code 10 (space). Multiple whitespace characters are retained by this process. It always
only reads one line and any blank lines in the input result in the (token list variable)
being empty. Unlike \ior_get:NN, line ends do not receive any special treatment. Thus
input

ab c

results in a token list a b ¢ with the letters a, b, and ¢ having category code 12. In the
non-branching version, where the(stream) is not open the (tl var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

All mappings are done at the current group level, i.e. any local assignments made
by the (function) or (code) discussed below remain in effect after the loop.

90

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_variable:NNn

New: 2019-01-13

\ior_str_map_variable:NNn

New: 2019-01-13

\ior_map_break:

New: 2012-06-29

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (lines) obtained by calling \ior_get : NN until
reaching the end of the file. TEX ignores any trailing new-line marker from the file it
reads. The (inline function) should consist of code which receives the (line) as #1.

\ior_str_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which receives the (line) as #1. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads.

\ior_map_variable:NNn (stream) (t1 var) {{code)}

For each set of (lines) obtained by calling \ior_get :NN until reaching the end of the file,
stores the (lines) in the (¢ var) then applies the (code). The (code) will usually make use
of the (variable), but this is not enforced. The assignments to the (variable) are local.
Its value after the loop is the last set of (lines), or its original value if the (stream) is
empty. TEX ignores any trailing new-line marker from the file it reads. This function is
typically faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn (stream) (variable) {(code)}

For each (line) in the (stream), stores the (line) in the (variable) then applies the (code).
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). The
(code) will usually make use of the (variable), but this is not enforced. The assignments to
the (variable) are local. Its value after the loop is the last (line), or its original value if the
(stream) is empty. Note that TEX removes trailing space and tab characters (character
codes 32 and 9) from every line upon input. TEX also ignores any trailing new-line marker
from the file it reads. This function is typically faster than \ior_str_map_inline:Nn.

\ior_map_break:

Used to terminate a \ior_map_. .. function before all lines from the (stream) have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TgXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

91

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N *
\ior_if_eof :NTF *

Updated: 2012-02-10

\ior_get_term:nN
\ior_str_get_term:nN

New: 2019-03-23

\iow_now:Nn
\iow_now: (Nx|cn|cx)

Updated: 2012-06-05

\iow_log:n
\iow_log:x

\ior_map_break:n {({code)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a file (stream) has been reached during a reading operation. The test
also returns a true value if the (stream) is not open.

12.1.2 Reading from the terminal

\ior_get_term:nN (prompt) (token list variable)

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the (token list) variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the (prompt) is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the (prompt) is given, it will appear in the terminal followed by an =, e.g.

prompt=

12.1.3 Writing to files

\iow_now:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

92

\iow_term:n \iow_term:n {(tokens)}
\iow_term:x

\iow_shipout:Nn

\iow_shipout:(Nx|cn|cx)

\iow_shipout_x:Nn

\iow_shipout_x:(Nx|cn|cx)

Updated: 2012-09-08

\iow_char:N *

\iow_newline:

*

This function writes the given (tokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_shipout:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (cf. \1ow_shipout_-
x:Nn).

TEXhackers note: When using expl3 with a format other than KTEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout_x:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than IXTEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_char:N \(char)
Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than ETEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn and direct
uses of primitive operations.

93

\iow_wrap:nnnN
\iow_wrap:nxnN

New: 2012-06-28

Updated: 2017-12-04

\iow_wrap_allow_break:

New: 2023-04-25

\iow_indent:n

New: 2011-09-21

12.1.4 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function wraps the (text) to a fixed number of characters per line. At the start
of each line which is wrapped, the (run-on text) is inserted. The line character count
targeted is the value of \1_iow_line_count_int minus the number of characters in the
(run-on text) for all lines except the first, for which the target number of characters is
simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

e \\ or \iow_newline: may be used to force a new line,
o \U may be used to represent a forced space (for example after a control sequence),
o \#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_wrap_allow_break: may be used to allow a line-break without inserting a
space,

e \iow_indent:n may be used to indent a part of the (text) (not the (run-on text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which is typically a wrapper around a write operation. The output of \iow_-
wrap:nnnN (7.e. the argument passed to the (function)) consists of characters of category
“other” (category code 12), with the exception of spaces which have category “space”
(category code 10). This means that the output does not expand further when written
to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_wrap_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

94

\1l_iow_line_count_int

New: 2012-06-24

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

\c_log_iow
\c_term_iow

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

\if_eof:w *

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTEX systems.

12.1.5 Constant input—output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

12.1.6 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

12.2 File operation functions

Contain the directory, name and extension of the current file. The directory is empty if
the file was loaded without an explicit path (7.e. if it is in the TEX search path), and does
not end in / other than the case that it is exactly equal to the root directory. The (name)
and (ext) parts together make up the file name, thus the (name) part may be thought of
as the “job name” for the current file. Note that TEX does not provide information on
the (ext) part for the main (top level) file and that this file always has an empty (dir)
component. Also, the (name) here will be equal to \c_sys_jobname_str, which may be
different from the real file name (if set using --jobname, for example).

95

\1_file_search_path_seq

New: 2017-06-18
Updated: 2023-06-15

\file_if_exist:nTF

Updated: 2012-02-10

\file_get:nnN
\file_get :nnNTF

New: 2019-01-16
Updated: 2019-02-16

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VNTF

Updated: 2019-02-16

\file_full_name:n 3%
\file_full_name:V 3%

New: 2019-09-03

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and need not include the trailing slash. Spaces need not
be quoted.

TEXhackers note: When working as a package in KXTEX 2¢, expl3 will automatically
append the current \input@path to the set of values from \1_file_search_path_seq

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq.

\file_get:nnN {(filename)} {(setup)} (tl)
\file_get:nnNTF {(filename)} {(setup)} (t1) {(true code)} {(false code)}

Defines (tl) to the contents of (filename). Category codes may need to be set appropri-
ately via the (setup) argument. The non-branching version sets the (¢/) to \q_no_value
if the file is not found. The branching version runs the (true code) after the assignment
to (¢l if the file is found, and (false code) otherwise.

\file_get_full_name:nN {(file name)} (tI)
\file_get_full_name:nNTF {(file name)} (t1) {(true code)} {(false code)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢l var) the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given (file name) has no extension but the file found
has that extension. In the non-branching version, the (¢l var) will be set to \q_no_value
in the case that the file does not exist.

\file_full_name:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream.
This includes an extension .tex when the given (file name) has no extension but the file
found has that extension. If the file is not found on the path, the expansion is empty.

96

\file_parse_full_name:nNNN
\file_parse_full_name:VNNN

New: 2017-06-23
Updated: 2020-06-24

\file_parse_full_name:n *

New: 2020-06-24

\file_parse_full_name:nNNN {(full name)} (dir) (name) (ext)

Parses the (full name) and splits it into three parts, each of which is returned by setting
the appropriate local string variable:

o The (dir): everything up to the last / (path separator) in the (file path). As with
system PATH variables and related functions, the (dir) does not include the trailing
/ unless it points to the root directory. If there is no path (only a file name), {dir)
is empty.

e The (name): everything after the last / up to the last ., where both of those
characters are optional. The (name) may contain multiple . characters. It is
empty if (full name) consists only of a directory name.

o The (ext): everything after the last . (including the dot). The (ext) is empty if
there is no . after the last /.

Before parsing, the (full name) is expanded until only non-expandable tokens remain,
except that active characters are also not expanded. Quotes (") are invalid in file names
and are discarded from the input.

\file_parse_full_name:n {(full name)}

Parses the (full name) as described for \file_parse_full_name:nNNN, and leaves (dir),
(name), and {ext) in the input stream, each inside a pair of braces.

\file_parse_full_name_apply:nN * \file_parse_full_name_apply:nN {(full name)} (function)

New: 2020-06-24

\file_hex_dump:n pxe
\file_hex_dump:nnn

New: 2019-11-19

\file_get_hex_dump:nN
\file_get_hex_dump:nNTF
\file_get_hex_dump:nnnN
\file_get_hex_dump:nnnNTF

New: 2019-11-19

Parses the (full name) as described for \file_parse_full_name:nNNN, and passes (dir),
(name), and (ext) as arguments to (function), as an n-type argument each, in this order.

\file_hex_dump:n {(file name)}

\file_hex_dump:nnn {(file name)} {(start index)} {(end index)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the hexadecimal
dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {(start index)} and {(end index)} values work as
described for \str_range:nnn.

\file_get_hex_dump:nN {(file name)} (tl var)
\file_get_hex_dump:nnnN {(file name)} {(start index)} {(end index)} (tl var)

Sets the (¢l var) to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the (file). If the file is not found, the (¢! var) will be set to \q_no_value.

97

\file_mdfive_hash:n 3

New: 2019-09-03

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:nNTF

New: 2017-07-11
Updated: 2019-02-16

\file_size:n w

New: 2019-09-03

\file_get_size:nN
\file_get_size:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_timestamp:n ¥

New: 2019-09-03

\file_get_timestamp:nN
\file_get_timestamp:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_mdfive_hash:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths con-
trolled by \1_file_search_path_seq. It then expands to leave the MD5 sum generated
from the contents of the file in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty.

\file_get_mdfive_hash:nN {(file name)} (tl var)

Sets the (tl var) to the result of applying \file_mdfive_hash:n to the (file). If the file
is not found, the (¢ var) will be set to \q_no_value.

\file_size:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:nN {(file name)} (tl var)

Sets the (¢l var) to the result of applying \file_size:n to the (file). If the file is not
found, the (¢l var) will be set to \q_no_value. This is not available in older versions of

XATEX.

\file_timestamp:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the modifica-
tion timestamp of the file in the input stream. The timestamp is of the form
D: (year)(month){day) (hour){minute)(second)(offset), where the latter may be z (UTC)
or (plus-minus){hours)’ (minutes)’. When the file is not found, the result of expansion
is empty. This is not available in older versions of XHTEX.

\file_get_timestamp:nN {(file name)} (tl1 var)

Sets the (tl var) to the result of applying \file_timestamp:n to the (file). If the file is
not found, the (¢l var) will be set to \q_no_value. This is not available in older versions

of XgTEX.

98

\file_compare_timestamp_p:nNn % \file_compare_timestamp_p:nNn {(file-1)
\file_compare_timestamp:nNnTF % \file_compare_timestamp:nNnTF {(file-1)

(file-2)}
(file-2)} {(true

} (comparator) {
} (comparator) {

New: 2019-05-13

code)} {(false code)}

Updated: 2019-09-20

\file_input:n

Updated: 2017-06-26

\file_input_raw:n *

New: 2023-05-18

\file_if_exist_input:n
\file_if_exist_input:nF

New: 2014-07-02

\file_input_stop:

New: 2017-07-07

Compares the file stamps on the two (files) as indicated by the (comparator), and inserts
either the (true code) or (false case) as required. A file which is not found is treated as
older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different. This is not available in older versions of XHTEX.

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IXTEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_input_raw:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional TEX source. No data concerning the file is tracked. If the
file is not found, no action is taken.

TEXhackers note: This function is intended only for contexts where files must be read
purely by expansion, for example at the start of a table cell in an \halign.

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nF {(file name)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
included in \1_file_search_path_seq. If found then reads in the file as additional
KTEX source as described for \file_input:n, otherwise inserts the (false code). Note
that these functions do not raise an error if the file is not found, in contrast to \file_-
input:n.

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TEXhackers note: This function must be used on a line on its own: TEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

99

\file_show_list: \file_show_list:

\file_log_list: \file_log_list:
These functions list all files loaded by IATEX 2¢ commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

100

\lua_now:n *
\lua_now:e *

New: 2018-06-18

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

Chapter 13

The 13luatex package:
LuaTgX-specific functions

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pIEX, uplEX or XHIEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTgEX engine are given in the LualTEX manual.

13.1 Breaking out to Lua

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter for processing. Each \lua_now:n
block is treated by Lua as a separate chunk. The Lua interpreter executes the (Lua
input) immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTgX is
in use two expansions are required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter when the current page is finalised
(i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate chunk.
The Lua interpreter will execute the (Lua input) during the page-building routine: no
TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TpX level, the (Lua input) is stored as a “whatsit”.

101

\lua_escape:n *
\lua_escape:e *

New: 2015-06-29

\lua_load_module:n

New: 2022-05-14

1tx.utils

ltx.utils.filedump

ltx.utils.filemd5sum

ltx.utils.filemoddate

\lua_escape:n {(token list)}

Converts the (token list) such that it can safely be passed to Lua: embedded backslashes,
double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTgX is in use two expansions are required to yield the result of the Lua code.

\lua_load_module:n {(Lua module name)}

Loads a Lua module into the Lua interpreter.

\lua_now:n passes its {(token list)} argument to the Lua interpreter as a single line,
with characters interpreted under the current catcode regime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TgXhackers note: This is a wrapper around the Lua call require ’(module)’.

13.2 Lua interfaces

As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the 1tx.utils table.

(dump) = ltx.utils.filedump((file),({offset),(length))

Returns the uppercase hexadecimal representation of the content of the (file) read as
bytes. If the (length) is given, only this part of the file is returned; similarly, one may
specify the (offset) from the start of the file. If the (length) is not given, the entire file is
read starting at the (offset).

(hash) = ltx.utils.filemd5sum((file))

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behaviour.
If the (file) is not found, nothing is returned with no error raised.

(date) = ltx.utils.filemoddate({file))
Returns the date/time of last modification of the (file) in the format

D: (year)(month){day)(hour){minute)(second) offset)

where the latter may be Z (UTC) or (plus-minus)(hours)’ (minutes)’. If the (file) is not
found, nothing is returned with no error raised.

102

ltx.utils.filesize size = ltx.utils.filesize((file))

Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned with
no error raised.

103

Chapter 14

The 13legacy package
Interfaces to legacy concepts

There are a small number of TEX or I'TEX 2¢ concepts which are not used in expl3 code
but which need to be manipulated when working as a BTEX 2¢ package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n * \legacy_if_p:n {(name)}
\legacy_if:nTF * \legacy_if:nTF {(name)} {(true code)} {(false code)}

Tests if the ITEX 22 /plain TEX conditional (generated by \newif) if true or false and
branches accordingly. The (name) of the conditional should omit the leading if.

\legacy_if_set_true:n \legacy_if_set_true:n {(name)}
\legacy_if_set_false:n \legacy_if_set_false:n {(name)}

ti::ig:i::gz:::;:{:enn (S)SftfsatlllseeBﬂE}(2¢/plain TEX conditional \if(name) (generated by \newif) to be true

New: 2021-05-10

\legacy_if_set:nn \legacy_if_set:nn {(name)} {(boolexpr)}

\Megacy_if_gsetinn g o e KTEX 2¢ /plain TEX conditional \if(name) (generated by \newif) to the result
New: 2021-05-10 of evaluating the (boolean expression).

104

Part IV
Data types

105

\tl_new:N
\tl_new:c

Chapter 15

The 13tl package
Token lists

TEX works with tokens, and I TEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_t1l

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ., {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, ., w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initialising token list variables

\tl_new:N (tl1 var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (tl var) is initially empty.

106

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN
\tl_concat:ccc
\t1l_gconcat:NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N
\tl_if_exist_p:c
\tl_if_exist:NTF

*
*
*
\tl_if exist:cTF %

New: 2012-03-03

\tl_const:Nn (tl1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (¢l var) is set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (¢l var).

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (tl var;) equal to that of (¢l vary).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

15.2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

\t1l_set:(NV|Nv|No|Ne|Nf|Nx|cn|cV|cv|co|ce|cE|cx)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Ne|Nf|Nx|cn|cV|cv|co|ce|cf|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl var) {(tokens)}

\tl_put_left:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var).

107

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

\tl_put_right:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

\tl_if_blank_p:n *
\tl_if_blank_p:(e|V|o) =
\tl_if_blank:nTF *
\tl_if_blank:(e|V|o)TF *

Updated: 2019-09-04

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

L T I

\tl_if_empty_p:n *
\tl_if_empty_p:(V|o) =
\tl_if_empty:nTF *
\tl_if_empty:(V|o)TEF *

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN *
\tl_if_eq_p:(Nc|cN|cc) *
\tl_if_eq:NNTF *
\tl_if_eq:(Nc|cN|ce)TF *

\tl_if_eq:NnTF
\tl_if_eq:cnTF

New: 2020-07-14

Appends (tokens) to the right side of the current content of (¢ var).

15.3 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {({token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)

\tl_if_eq:NNTF (tl1 vari) (tl vars) {{true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_t1l \1_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq:NnTF (t1 var;) {(token lists)} {(true code)} {(false code)}

Tests if the (token list variable;) and the (token listz) contain the same list of tokens, both
in respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

108

\tl_if_eq:nnIE

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_novalue_p:n *
\tl_if_novalue:nTF x

New: 2017-11-14

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF

*
*
*
\tl_if_single:cTF *

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_if_single_token_p:n %
\tl_if_single_token:nTF *

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes. This conditional is not expandable: see \t1l_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6). The search does not enter
brace (category code 1/2) groups.

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1l marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (tl var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single (item), i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \t1l_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one (item), i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}
\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single normal token. Token groups ({...}) are not single tokens.

109

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN x \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode_p:oN * \tl_if_head_eq_catcode:nNTF {(token list)
\tl_if_head_eq_catcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_catcode:oNTF *

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN x \tl_if_head_eq_charcode_p:nN {(token list)} (test token)
\tl_if_head_eq_charcode_p:fN * \tl_if_head_eq_charcode:nNTF {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_charcode:fNTF x

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN x \tl_if_head_eq_meaning p:nN {(token list)} (test token)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)} (test token)
{(true code)} {(false code)}

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n = \tl_if_head_is_group_p:n {(token list)}
\tl_if_head_is_group:nTF x \tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08 Lests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a normal first token. This
function is useful to implement actions on token lists on a token by token basis.

110

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

\tl_to_str:n *
\tl_to_str:(o|V]v) *

\tl_to_str:N *
\tl_to_str:c *

\tl_use:N *
\tl_use:c *

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 32 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

15.4 Working with token lists as a whole

15.4.1 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space). The base function requires only a single
expansion. Its argument must be braced.

TgXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list) to
a (string) yields a concatenation of the string representations of every token in the (token list).
The string representation of a control sequence is

e an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1l_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl var)

Converts the content of the (tl var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

\tl_use:N (tl1 var)

Recovers the content of a (¢ var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

111

\tl_count:n *
\tl_count:(V|o) =

New: 2012-05-13

\tl_count:N *
\tl_count:c %

New: 2012-05-13

\tl_count_tokens:n *

New: 2019-02-25

\tl_reverse:n *
\tl_reverse:(V|o) *

Updated: 2012-01-08

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

15.4.2 Counting and reversing token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

\tl_count:N (tl var)

Counts the number of (items) in the (¢l var) and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({...3}). This
process ignores any unprotected spaces within the (¢ var). See also \t1_count:n. This
function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item;)(items) (items)
... (item,) becomes (itemy,). .. (itemg)(items)(itemy). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_reverse:N (tl1 var)

Sets the (#l var) to contain the result of reversing the order of its (items), so that
(itemy) (itemsa) (items) ... (item,) becomes (item,,). .. (items){itema)(item;). This process
preserves unprotected spaces within the (token list variable). Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (¢l var), so that {(item;)}{(items)H{ (items)}
... {(itemy,)} becomes {(item,)} ... {{items)}{(items)}{(item;)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1l_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

112

\tl_trim_spaces:n *
\tl_trim_spaces:o *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces_apply:nN %
\tl_trim_spaces_apply:oN x*

New: 2018-04-12

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\t1l_show:N
\tl_show:c

Updated: 2021-04-29

\tl_show:n
\tl_show:x

Updated: 2015-08-07

\tl_log:N
\tl_log:c

New: 2014-08-22
Updated: 2021-04-29

\tl_log:n
\tl_log:x

New: 2014-08-22

Updated: 2015-08-07

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_trim_spaces_apply:nN {(token 1ist)} (function)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the (function)
as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Sets the (¢ var) to contain the result of removing any leading and trailing explicit space
characters (explicit tokens with character code 32 and category code 10) from its contents.

15.4.3 Viewing token lists

\tl_show:N (tl var)

Displays the content of the (¢ var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

113

\tl_map_function:NN %
\tl_map_function:cN ¥

Updated: 2012-06-29

\tl_map_function:nN %

Updated: 2012-06-29

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\t1l_map_tokens:Nn 7
\tl_map_tokens:cn ¥
\tl_map_tokens:nn ¥

New: 2019-09-02

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

15.5 Manipulating items in token lists

15.5.1 Mapping over token lists

All mappings are done at the current group level, 7.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (item) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (tl1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

\tl_map_tokens:Nn (t1 var) {(code)}

\tl_map_tokens:nn {(tokens)} {(code)}

Analogue of \t1l_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each (item) in the (tl var) or in (tokens) as a trailing brace
group. For instance,

\tl_map_tokens:Nn \1_my_tl { \prg_replicate:nn { 2 } }

expands to twice each (item) in the (¢l var): for each (item) in \1_my_t1 the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn (tl var) (variable) {{code)}

Stores each (item) of the (¢l var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢ var) is blank. See also \t1_map_inline:Nn.

114

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break: v

Updated: 2012-06-29

\tl_map_break:n w

Updated: 2012-06-29

\tl_map_variable:nNn {(token list)} (variable) {(code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢l var) is blank. See also \t1_map_inline:nn.

\t1l_map_break:

Used to terminate a \tl_map_... function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \t1l_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

15.5.2 Head and tail of token lists

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

115

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) =

Updated: 2012-09-09

\tl_head:w *

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|f) =

Updated: 2012-09-01

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1l_head:n should be preferred if the number of expansions is
not critical.

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1l_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

If you wish to handle token lists where the first token may be a space, and this

116

\tl_item:nn *
\tl_item:Nn *
\tl_item:cn *

New: 2014-07-17

\tl_rand_item:N *
\tl_rand_item:c x
\tl_rand_item:n *

New: 2016-12-06

needs to be treated as the head/tail, this can be accomplished using \t1_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }
\cs_new:Npn \mypkg_tl_head_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{~1
{ \tl_head:n {#1} }
}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }

15.5.3 Items and ranges in token lists

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

\tl_rand_item:N (tl1 var)
\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is not available in older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

117

\tl_range:Nnn *
\tl_range:nnn *

New: 2017-02-17
Updated: 2017-07-15

\tl_range:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the {(end index) inclusive.
Spaces and braces are preserved between the items returned (but never at either end
of the list). Here (start index) and (end indezx) should be (integer expressions). For
describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let [be the count
of the token list.

The actual start point is determined as M = mif m >0andas M =1+ m+ 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1
{1

B e
-~ A
=~

-

\tl_range:nnn { abcd~{e{}}fg 2}
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

\iow_term:x { \tl_range:nnn { 511}
\iow_term:x { \tl_range:nnn {
\iow_term:x { \tl_range:nnn {

\iow_term:x { \tl_range:nnn {

abcd{e{}}fg P A{
abcd{e{}}fg }{-33r1}
abcd{e{}}fg 6> {521}
abcd{e{}}fg } { -6 > { -3 } 2

Y {2
P {2
P L

are all equivalent and will print becd{e{}} on the terminal; similarly

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} {23+ {51} }

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg ¥} {23} { -3} 1}
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} { 6 >} { 5} }
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3} }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } {2} {4}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list <t1>, the
call is \t1l_range:nnn { <t1> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <t1> } {1 } { -2 }.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

118

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN *

New: 2017-02-06

15.5.4 Sorting token lists

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢l var) according to the (comparison code), and assigns the result
to (tl var). The details of sorting comparison are described in Section 6.1.

\tl_sort:nN {(token 1ist)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 6.1.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

15.6 Manipulating tokens in token lists

15.6.1 Replacing tokens

Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a categroy code 1/2 pair).

\tl_replace_once:Nnn

\tl_replace_once:Nnn (tl var) {(old tokens)} {(new

\tl_replace_once:(Nxx|cnn|cxx) tokens)}
\tl_greplace_once:Nnn

\tl_greplace_once:cxx
\tl_greplace_once:Nxx

\tl_greplace_once:cnn

Updated: 2011-08-11

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn

\tl_replace_all:Nnn (t1 var) {(old tokens)} {(new tokens)}

\tl_replace_all:(Nxx|cnn)

\tl_replace_all:cxx
\tl_greplace_all:Nxx

\tl_greplace_all:Nnn

\tl_greplace_all:(cnn|cxx)

Updated: 2011-08-11

Replaces all occurrences of (old tokens) in the (¢ var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

119

\tl_remove_once:Nn

\tl_remove_once:Nn (tl1 var) {(tokens)}

\tl_remove_once:(Nx|cn|cx)

\tl_gremove_once:Nn
\tl_gremove_once:cx
\tl_gremove_once:Nx

\tl_gremove_once:cn

Updated: 2011-08-11

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn

\tl_remove_all:Nn (t1 var) {(tokens)}

\tl_remove_all:(Nx|cn|cx)

\tl_gremove_all:Nn
\tl_gremove_all:cx
\tl_gremove_all:Nx

\tl_gremove_all:cn

Updated: 2011-08-11

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_tl {abbccd} \tl_remove_all:Nn \1_tmpa_tl {bc}

results in \1_tmpa_t1 containing abcd.

15.6.2 Reassigning category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

120

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

\tl_rescan:nV

Updated: 2015-08-11

\c_empty_tl

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain any
valid input, although only changes in category codes, such as uses of \cctab_select:N,
are relevant. See also \t1l_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \tl_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes
in category codes, such as uses of \cctab_select:N, are relevant. See also \tl_set_-
rescan:Nnn, which is more robust than using \t1l_set:Nn in the (tokens) argument of
\tl_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

Contrarily to the \scantokens primitive, \t1_rescan:nn tokenizes the whole string in the
same category code regime rather than one token at a time, so that directives such as \verb
that rely on changing category codes will not function properly.

15.7 Constant token lists

Constant that is always empty.

121

\c_novalue_t1

New: 2017-11-14

\c_space_tl

\1_tmpa_tl

\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1

A marker for the absence of an argument. This constant t1 can safely be typeset (¢f. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_t1 is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:NnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1 marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

15.8 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

122

Chapter 16

The I13str package: Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TgX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and I3token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

123

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn
\str_const: (NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat :NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

New: 2017-10-08

\str_if_exist_p:N *
\str_if_exist_p:c *
\str_if_exist:NTF x
\str_if_exist:cTF %

New: 2015-09-18

16.1 Creating and initialising string variables

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token list), converted to a string.

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var;) equal to that of (str vary).

\str_concat:NNN (str vari) (str varp) (str vars)

Concatenates the content of (str vare) and (str vars) together and saves the result in
(str vary). The (str vary) is placed at the left side of the new string variable. The
(str vary) and (str vars) must indeed be strings, as this function does not convert their
contents to a string.

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

124

16.2 Adding data to string variables

\str_set:Nn \str_set:Nn (str var) {(token list)}
\str_set:(NV|Nx|cn|cV|cx)
\str_gset:Nn

\str_gset: (NV|Nx|cn|cV|cx)

Converts the (token list) to a (string), and stores the result in (str var).

New: 2015-09-18
Updated: 2018-07-28

\str_put_left:Nn \str_put_left:Nn (str var) {(token list)}
\str_put_left:(NV|Nx|cn|cV|cx)

\str_gput_left:Nn

\str_gput_left:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn \str_put_right:Nn (str var) {(token list)}
\str_put_right:(NV|Nx|cn|cV|cx)

\str_gput_right:Nn

\str_gput_right:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

16.3 String conditionals

\str_if_empty_p:N * \str_if_empty_p:N (str var)

*
\str_if_empty_p:c * \str_if_empty:NTF (str var) {(true code)} {(false code)}
\Str-}f-emPty:NE * Tests if the (string variable) is entirely empty (i.e. contains no characters at all).
\str_if_empty:cTF *
\str_if_empty_p:n *

*

\str_if_empty:nTF

New: 2015-09-18
Updated: 2022-03-21

\str_if_eq_p:NN
\str_if_eq_p:(Nc|cN|cc)
\str_if_eq:NNTF
\str_if_eq:(Nc|cN|cc)TF

* \str_if_eq_p:NN (str vari) (str var)

* \str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}

: Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including

New: 2015-09-18 their category codes) rather than characters.

125

\str_if_eq_p:nn

\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee) x \str_if_eq:nnTF {(t1i)

\str_if_eq:nnTF
\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF *

(t12)}
(t12)} {(true code)} {(false code)}

* \str_if_eq_p:nn {(t11)} {
A

*

Updated: 2018-06-18

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF

New: 2017-10-08

\str_case:

\str_case
\str_case
\str_case
\str_case
\str_case

nn
: (Vn|on|nV|nv)
:nnTF

: (Vn|on|nV|nv)TF
:Nn

:NnTF

X% X ok X ot

New: 2013-07-24
Updated: 2022-03-21

Compares the two (token lists) on a character by character basis (namely after converting
them to strings), and is true if the two (strings) contain the same characters in the same
order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true. See \t1_if_eq:nnTF to compare tokens (including their category codes)
rather than characters.

\str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

Converts the (token list) to a (string) and tests if that (string) is found in the content of
the (str var).

\str_if_in:nnTF {(t1:)} {(t12)} {(true code)} {(false code)}

Converts both (token lists) to (strings) and tests whether (strings) is found inside
(string;).

\str_case:nnTF {(test string)}
{
{(string case1)

} {{code casei)}
{(string case2)} {

(code casez)}

%<.s‘tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the (test string) in turn with each of the (string cases) (all token lists are
converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case:nn, which does nothing if there is no match, is also available.

This set of functions performs no expansion on each (string case) argument, so any
variable in there will be compared as a string. If expansion is needed in the (string cases),
then \str_case_e:nn(TF) should be used instead.

126

\str_case_e:nn *
\str_case_e:nnTF *

New: 2018-06-19

\str_compare_p:nNn
\str_compare_p:eNe
\str_compare:nNnTF

*
*
*
\str_compare:eNeTF %

New: 2021-05-17

\str_map_function:nN w
\str_map_function:NN
\str_map_function:cN w

New: 2017-11-14

\str_case_e:nnTF {(test string)}
{
{(string casei)} {(code case:i)}
{(string cases)} {{code cases)}

%(.s.tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the full expansion of the (test string) in turn with the full expansion of the
(string cases) (all token lists are converted to strings). If the two full expansions are
equal (as described for \str_if_eq:nnTF) then the associated (code) is left in the input
stream and other cases are discarded. If any of the cases are matched, the (true code)
is also inserted into the input stream (after the code for the appropriate case), while
if none match then the (false code) is inserted. The function \str_case_e:nn, which
does nothing if there is no match, is also available. The (test string) is expanded in each
comparison, and must always yield the same result: for example, random numbers must
not be used within this string.

\str_compare_p:nNn {(tl1)} (relation) {(tl2)}
\str_compare:nNnTF {(tl1)} (relation) {(tl:)} {(true code)} {(false code)}

Compares the two (token lists) on a character by character basis (namely after convert-
ing them to strings) in a lexicographic order according to the character codes of the
characters. The (relation) can be <, =, or > and the test is true under the following
conditions:

o for <, if the first string is earlier than the second in lexicographic order;
o for =, if the two strings have exactly the same characters;
o for >, if the first string is later than the second in lexicographic order.
Thus for example the following is logically true:
\str_compare_p:nNn { ab } < { abc }
TEXhackers note: This is a wrapper around the TEX primitive \ (pdf) strcmp. It is meant for

programming and not for sorting textual contents, as it simply considers character codes and
not more elaborate considerations of grapheme clusters, locale, etc.

16.4 Mapping over strings

All mappings are done at the current group level, i.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\str_map_function:nN {(token 1list)} (function)
\str_map_function:NN (str var) (function)

Converts the (token list) to a (string) then applies (function) to every (character) in the
(string) including spaces.

127

\str_map_inline:nn
\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_tokens:nn 5
\str_map_tokens:Nn 5
\str_map_tokens:cn 5¥¢

New: 2021-05-05

\str_map_variable:nNn
\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_break: w

New: 2017-10-08

\str_map_inline:nn {(token list)} {(inline functiomn)}
\str_map_inline:Nn (str var) {(inline function)}

Converts the (token list) to a (string) then applies the (inline function) to every
(character) in the (str var) including spaces. The (inline function) should consist of
code which receives the (character) as #1.

\str_map_tokens:nn {(token list)} {(code)}
\str_map_tokens:Nn (str var) {(code)}

Converts the (token list) to a (string) then applies {code) to every (character) in the
(string) including spaces. The (code) receives each character as a trailing brace group.
This is equivalent to \str_map_function:nN if the {code) consists of a single function.

\str_map_variable:nNn {(token list)} (variable) {(code)}
\str_map_variable:NNn (str var) (variable) {(code)}

Converts the (token list) to a (string) then stores each (character) in the (string) (in-
cluding spaces) in turn in the (string or token list) (variable) and applies the (code). The
{code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. Its value after the loop is the last {character) in the (string),
or its original value if the (string) is empty. See also \str_map_inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

128

\str_map_break:n 5¢

New: 2017-10-08

\str_use:N *
\str_use:c x

New: 2015-09-18

\str_map_break:n {({code)}

Used to terminate a \str_map_... function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

16.5 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(stry directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

* \str_count:n {(token list)}
*
*

\str_count_ignore_spaces:n *

New: 2015-09-18

\str_count_spaces:N *
\str_count_spaces:c *
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

129

\str_head:N
\str_head:c
\str_head:n

* \str_head:n {(token list)}
*
*

\str_head_ignore_spaces:n x

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N
\str_tail:c
\str_tail:n

* \str_tail:n {(token list)}
*
*

\str_tail_ignore_spaces:n *

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the (token list) is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn
\str_item:nn

* \str_item:nn {(token list)} {(integer expression)}
*

\str_item_ignore_spaces:nn x

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

130

\str_range:Nnn
\str_range:cnn
\str_range:nnn

* \str_range:nnn {(token list)} {(start index)} {(end index)}
*
*

\str_range_ignore_spaces:nnn x

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the characters
from the (start indez) to the (end indez) inclusive. Spaces are preserved and counted as
items (contrast this with \t1_range:nnn where spaces are not counted as items and are
possibly discarded from the output).

Here (start indezr) and (end index) should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let [be the count of the
token list.

The actual start point is determined as M = mif m > 0andas M =1+ m +1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1ifn <O0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [. For
instance,

\iow_term:x { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:x { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { -2} { -1 1} }
\iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }

prints bcde, cdef, ef, and an empty line to the terminal. The (start index) must always
be smaller than or equal to the (end index): if this is not the case then no output is
generated. Thus

\iow_term:x { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

\iow_term:x { \str_range:nnn { abcdefg } { 2} {5} }

\iow_term:x { \str_range:nnn { abcdefg } { 2} { -3 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 > { 56 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 > { -3 } }

\iow_term:x { \str_range:nnn { abc~efg } {2} {51} }

\iow_term:x { \str_range:nnn { abc~efg } {2} { -3} }

\iow_term:x { \str_range:nnn { abc~efg } { -6 >} { 5 } }

\iow_term:x { \str_range:nnn { abc~efg } { -6 > { -3 } 1}

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } {5 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

131

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2} { -3 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5} }
\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

16.6 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to right,
the pattern (old string) may remain after the replacement (see \str_remove_all:Nn for
an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence of
(string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes all occurrences of (string) from the
(str var). As this function operates from left to right, the pattern (string) may remain
after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

132

16.7 String manipulation

\str_lowercase:n x \str_lowercase:n {(tokens)}
\str_lowercase:f x \str_uppercase:n {(tokens)}
\str_uppercase:n *
. f

Converts the input (tokens) to their string representation, as described for \tl_to_-
\str_uppercase

str:n, and then to the lower or upper case representation using a one-to-one mapping
New: 2019-11-26 ag described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_uppercase:f { \tl_head:n {#1} }
\str_lowercase:f { \tl_tail:n {#1} }
}
{#2 }
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_casefold:n for this situation (case folding is dis-
tinct from lower casing).

e Case changing text for typesetting: see the \text_lowercase:n(n), \text_-
uppercase:n(n) and \text_titlecase:n(n) functions which correctly deal with
context-dependence and other factors appropriate to text case changing.

133

\str_casefold:n x
\str_casefold:V x

New: 2022-10-16

\str_mdfive_hash:n *
\str_mdfive_hash:e *

New: 2023-05-19

\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18
Updated: 2021-04-29

\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15
Updated: 2021-04-29

\str_casefold:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_casefold:n follows the mappings provided by the Unicode
Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined
by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-insensitive
process, there is no special treatment of Turkic input (é.e. I always folds to i and not to

1).

\str_mdfive_hash:n {(t1)}

Expands to the MD5 sum generated from the (¢l), which is converted to a (string) as
described for \t1_to_str:n.

16.8 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

\str_log:N (str var)
Writes the content of the (str var) in the log file.

134

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

16.9 Constant strings

\c_ampersand_str Constant strings, containing a single character token, with category code 12.
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
\c_zero_str

New: 2015-09-19
Updated: 2020-12-22

16.10 Scratch strings

\1_tmpa_str Scratch strings for local assignment. These are never used by the kernel code, and so
\1_tmpb_str are safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str Scratch strings for global assighment. These are never used by the kernel code, and so
\g_tmpb_str are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

16.11 Deprecated functions

\str_foldcase:n x \str_foldcase:n {(tokens)}

\str_foldcase:V * A previous name for the functionally-identical \str_casefold:n.

New: 2019-11-26

135

Chapter 17

The I3str-convert package:
String encoding conversions

17.1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing
a string of characters is done in two steps.

o The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be UTF-16, 1SO 8859-1, etc. See Table 1 for a list of supported
encodings.”

o Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.”

"Encodings and escapings will be added as they are requested.

136

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

(Encoding) description
utf8 UTF-8
utf16 UTF-16, with byte-order mark
utf16be UTF-16, big-endian
utfi6le UTF-16, little-endian
utf32 UTF-32, with byte-order mark
utf32be UTF-32, big-endian
utf32le UTF-32, little-endian
is088591, latinl ISO 8859-1
is088592, latin? ISO 8859-2
15088593, latin3 ISO 8859-3
is088594, latind ISO 8859-4
15088595 IS0 8859-5
15088596 ISO 8859-6
15088597 ISO 8859-7
15088598 ISO 8859-8
15088599, latinb ISO 8859-9
150885910, 1latin6 ISO 8859-10
is0885911 1SO 8859-11
180885913, latin7 ISO 8859-13
is0885914, latin8 ISO 8859-14
150885915, latin9 1SO 8859-15
150885916, latinl0 1SO 8859-16
clist commar-list of integers
(empty) native (Unicode) string
default like ut£8 with 8-bit engines, and like native with unicode-engines

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

(FEscaping) description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits
name see \pdfescapename
string see \pdfescapestring
url encoding used in URLs

137

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

\str_convert_pdfname:n *

17.2 Conversion functions

\str_set_convert:Nnnn (str var) {(string)} {(name 1)} {(name 2)}

This function converts the (string) from the encoding given by (name 1) to the encoding
given by (name 2), and stores the result in the (str var). Each (name) can have the
form (encoding) or {encoding)/{escaping), where the possible values of (encoding) and
(escaping) are given in Tables 1 and 2, respectively. The default escaping is to input and
output bytes directly. The special case of an empty (name) indicates the use of “native”
strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \1_foo_str { Hello! } { } { utfi6/hex }

results in the variable \1_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the UTF-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the (string) is not valid according to the (escaping 1) and
(encoding 1), or if it cannot be reencoded in the (encoding 2) and (escaping 2) (for
instance, if a character does not exist in the (encoding 2)). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the (encoding 2),
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:NnnnTF (str var) {(string)} {(name 1)} {(name 2)} {(true code)}
{(false code)}

As \str_set_convert:Nnnn, converts the (string) from the encoding given by (name 1)
to the encoding given by (name 2), and assigns the result to (str var). Contrarily to
\str_set_convert:Nnnn, the conditional variant does not raise errors in case the (string)
is not valid according to the (name 1) encoding, or cannot be expressed in the (name 2)
encoding. Instead, the (false code) is performed.

17.3 Conversion by expansion (for PDF contexts)

A small number of expandable functions are provided for use in PDF string/name con-
texts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n (string)

As \str_set_convert:Nnnn, converts the (string) on a byte-by-byte basis with non-
ASCII codepoints escaped using hashes.

17.4 Possibilities, and things to do

Encoding/escaping-related tasks.

138

In XHTEX/LuaTEX, would it be better to use the ~~~~.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ~ the category
superscript, and use \scantokens.

Change \str_set_convert:Nnnn to expand its last two arguments.

Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

Add documentation about each encoding and escaping method, and add examples.
The hex unescaping should raise an error for odd-token count strings.

Decide what bytes should be escaped in the url escaping. Perhaps the characters
17 ()*-./0123456789_ are safe, and all other characters should be escaped?

Automate generation of 8-bit mapping files.

Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

More encodings (see Heiko’s stringenc). CESU?

More escapings: ASCII85, shell escapes, lua escapes, etc.?

139

Chapter 18

The 13quark package
Quarks

Two special types of constants in I TEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

18.1 Quarks

Quarks are control sequences (and in fact, token lists) that expand to themselves and
should therefore never be executed directly in the code. This would result in an endless
loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \g_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\g_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster.

140

18.2 Defining quarks

\quark_new:N \quark_new:N (quark)

\q_stop

\q_mark

\g_nil

\q_no_value

\quark_if_nil_p:N
\quark_if_nil:NTF

\quark_if_nil_p:n
\quark_if nil_p:(o]|V)
\quark_if_nil:nTF
\quark_if _nil:(o|V)TF

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

\quark_if_no_value_p:n
\quark_if_no_value:nTF

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \g_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

18.3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)

\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}

\quark_if_nil:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \g_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

* \quark_if_no_value_p:n {(token list)}

\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

141

18.4 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 18.4.1.

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N x \quark_if_recursion_tail_stop:N (token)

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n x \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o *

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn * \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn * \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertiom)}
\quark_if_recursion_tail_stop_do:on =*

Updated: 2011-09-06

Tests if the (token list) contains only \g_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \g_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

142

\quark_if_recursion_tail_break:NN % \quark_if_recursion_tail_break:nN {(token list)}
\quark_if_recursion_tail_break:nN x \(type)_map_break:

New: 2018-04-10

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

18.4.1 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]1~} would produce “[-a-b-] [-c-d-] 7. Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \gq_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \g_recursion_tail
\g_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to I¥TEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

143

18.5 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see I3regex).

\scan_new:N \scan_new:N (scan mark)

New: 2018-04-01 Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is defined
globally, and an error message is raised if the name was already taken by another scan
mark.

\s_stop Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
New: 2018-04-01 none_delimit_by_s_stop:w.

\use_none_delimit_by_s_stop:w x \use_none_delimit_by_s_stop:w (tokens) \s_stop

New: 2018-04-01

Removes the (tokens) and \s_stop from the input stream. This leads to a low-level TEX
error if \s_stop is absent.

144

\seq_new:N

\seq_new:c

\seq_clear:N

\seq_clear:c
\seq_gclear:N

\seq_gclear:c

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

Chapter 19

The 13seq package
Sequences and stacks

IXTEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

19.1 Creating and initialising sequences

\seq_new:N (seq var)

Creates a new (seq var) or raises an error if the name is already taken. The declaration
is global. The (seq var) initially contains no items.

\seq_clear:N (seq var)

Clears all items from the (seq var).

\seq_clear_new:N (seq var)

Ensures that the (seq var) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the (seq var) empty.

\seq_set_eq:NN (seq vari) (seq varsz)

Sets the content of (seq var;) equal to that of (seq vars).

145

\seq_set_from_clist:NN \seq_set_from_clist:NN (seq var) (comma-list)
\seq_set_from_clist:(cN|Nc|cc)

\seq_set_from_clist:Nn

\seq_set_from_clist:cn

\seq_gset_from_clist:NN

\seq_gset_from_clist:(CMNC|CC)

\seq_gset_from_clist:Nn

\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the (comma list) into a (seq var): the original (comma list) is
unchanged.

\seq_const_from_clist:Nn \seq_const_from_clist:Nn (seq var) {(comma-list)}
\seq_const_from_clist:cn

Creates a new constant (seq var) or raises an error if the name is already taken. The
New: 2017-11-28 (seq var) is set globally to contain the items in the {(comma list).

\seq_set_split:Nnn \seq_set_split:Nnn (seq var) {(delimiter)} {(token list)}
\seq_set_split:NnV
\seq_gset_split:Nnn
\seq_gset_split:NnV

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(seq var). Spaces on both sides of each (item) are ignored, then one set of outer braces is
removed (if any); this space trimming behaviour is identical to that of 13clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list). See also \seq_set_split_keep_spaces:Nnn,
which omits space stripping.

New: 2011-08-15
Updated: 2012-07-02

\seq_set_split_keep_spaces:Nnn \seq_set_split_keep_spaces:Nnn (seq var) {(delimiter)} {(token list)}
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn
\seq_gset_split_keep_spaces:NnV

New: 2021-03-24

Splits the (token list) into (items) separated by (delimiter), and assigns the result to
the (seq var). One set of outer braces is removed (if any) but any surrounding spaces
are retained: any braces inside one or more spaces are therefore kept. Empty (items)
are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list). See also \seq_set_split:Nnn, which removes
spaces around the delimiters.

\seq_concat:NNN \seq_concat:NNN (seq vari) (seq vars) (seq vars)
\seq_concat:ccc

\seq_gconcat : NNN
\seq_gconcat:ccc

Concatenates the content of (seq vary) and (seq vars) together and saves the result in
(seq vary). The items in (seq vary) are placed at the left side of the new sequence.

146

\seq_if_exist_p:N *
\seq_if_exist_p:c *
\seq_if_exist:NTF *
\seq_if_exist:cTF *

New: 2012-03-03

\seq_if_exist_p:N (seq var)
\seq_if_exist:NTF (seq var) {(true code)} {(false code)}

Tests whether the (seq var) is currently defined. This does not check that the (seq var)
really is a sequence variable.

19.2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (seq var) {(item)}

\seq_put_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_left:Nn

\seq_gput_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (seq var).

\seq_put_right:Nn

\seq_put_right:Nn (seq var) {(item)}

\seq_put_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_right:Nn

\seq_gput_right: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

Appends the (item) to the right of the (seq var).

19.3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1l_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (seq var) (token list variable)

Stores the left-most item from a (seq var) in the (token list variable) without removing
it from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_get_right:NN (seq var) (token list variable)

Stores the right-most item from a (seq var) in the (token list variable) without removing
it from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop_left:NN (seq var) (token list variable)

Pops the left-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \q_no_value.

147

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn *
\seq_item:cn *

New: 2014-07-17

\seq_rand_item:N *
\seq_rand_item:c *

New: 2016-12-06

\seq_gpop_left:NN (seq var) (token list variable)

Pops the left-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). The (seq var) is modified
globally, while the assignment of the (token list variable) is local. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop_right:NN (seq var) (token list variable)

Pops the right-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop_right:NN (seq var) (token list variable)

Pops the right-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). The (seq var) is modified
globally, while the assignment of the (token list variable) is local. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_item:Nn (seq var) {(integer expression)}

Indexing items in the (seq var) from 1 at the top (left), this function evaluates the (integer
expression) and leaves the appropriate item from the sequence in the input stream. If the
(integer expression) is negative, indexing occurs from the bottom (right) of the sequence.
If the (integer expression) is larger than the number of items in the (seq var) (as calculated
by \seq_count:N) then the function expands to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

\seq_rand_item:N (seq var)

Selects a pseudo-random item of the (seq var). If the (seq var) is empty the result is
empty. This is not available in older versions of XHTEX.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

19.4 Recovering values from sequences with branch-
ing

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

148

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right :NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left:NNTF
\seq_pop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right:NNTF
\seq_pop_right:cNTF

New: 2012-05-19

\seq_gpop_right :NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

\seq_get_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the left-most item from the (seq var) in the (token list
variable) without removing it from the (seq var), then leaves the (true code) in the input
stream. The (token list variable) is assigned locally.

\seq_get_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the right-most item from the (seq var) in the (token list
variable) without removing it from the (seq var), then leaves the (true code) in the input
stream. The (token list variable) is assigned locally.

\seq_pop_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the left-most item from the (seq var) in the (token list
variable), i.e. removes the item from the (seq var), then leaves the (true code) in the
input stream. Both the (seq var) and the (token list variable) are assigned locally.

\seq_gpop_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (seq wvar) is non-empty, pops the left-most item from the (seq var) in the (token
list variable), i.e. removes the item from the (seq var), then leaves the (true code) in
the input stream. The (seq var) is modified globally, while the (token list variable) is
assigned locally.

\seq_pop_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the right-most item from the (seq var) in the (token list
variable), i.e. removes the item from the (seq var), then leaves the (true code) in the
input stream. Both the (seq var) and the (token list variable) are assigned locally.

\seq_gpop_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (seq var) is non-empty, pops the right-most item from the (seq var) in the (token
list variable), i.e. removes the item from the (seq var), then leaves the (true code) in
the input stream. The (seq var) is modified globally, while the (token list variable) is
assigned locally.

149

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

\seq_set_item:Nnn
\seq_set_item:cnn
\seq_set_item:NnnTF
\seq_set_item:cnnTF
\seq_gset_item:Nnn
\seq_gset_item:cnn
\seq_gset_item:NnnTF
\seq_gset_item:cnnTF

New: 2021-04-29

\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

19.5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N (seq var)
Removes duplicate items from the (seq var), leaving the left most copy of each item in the

(seq var). The (item) comparison takes place on a token basis, as for \t1_if_eq:nnTF.

TgXhackers note: This function iterates through every item in the (seq var) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn (seq var) {(item)}

Removes every occurrence of (item) from the (seq var). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

\seq_set_item:Nnn (seq var) {(int expr)} {(item)}
\seq_set_item:NnnTF (seq var) {(int expr)} {(item)} {(true code)} {(false code)}

Removes the item of (seq var) at the position given by evaluating the (int expr) and
replaces it by (item). Items are indexed from 1 on the left/top of the (seq var), or from
—1 on the right/bottom. If the (int expr) is zero or is larger (in absolute value) than the
number of items in the sequence, the (seq var) is not modified. In these cases, \seq_-
set_item:Nnn raises an error while \seq_set_item:NnnTF runs the (false code). In cases
where the assignment was successful, (true code) is run afterwards.

\seq_reverse:N (seq var)

Reverses the order of the items stored in the (seq var).

\seq_sort:Nn (seq var) {({comparison code)}

Sorts the items in the (seq var) according to the (comparison code), and assigns the result
to (seq var). The details of sorting comparison are described in Section 6.1.

150

\seq_shuffle:N
\seq_shuffle:c
\seq_gshuffle:N
\seq_gshuffle:c

New: 2018-04-29

\seq_if_empty_p:N =
\seq_if_empty_p:c *
\seq_if_empty:NTF *
\seq_if_empty:cTF *

\seq_shuffle:N (seq var)
Sets the (seq var) to the result of placing the items of the (seq var) in a random order.

Each item is (roughly) as likely to end up in any given position.

TEXhackers note: For sequences with more than 13 items or so, only a small proportion
of all possible permutations can be reached, because the random seed \sys_rand_seed: only
has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535
items (depending on the engine) cannot be shuffled.

19.6 Sequence conditionals

\seq_if_empty_p:N (seq var)
\seq_if_empty:NTF (seq var) {(true code)} {(false code)}

Tests if the (seq var) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (seq var) {(item)} {(true code)} {(false code)}

\seq_if_in:(NV|Nv|No|Nx|cn|cV|cv|co|cx)TF

\seq_map_function:NN w
\seq_map_function:cN %

Updated: 2012-06-29

\seq_map_inline:Nn
\seq_map_inline:cn

Updated: 2012-06-29

Tests if the (item) is present in the (seq var).

19.7 Mapping over sequences

All mappings are done at the current group level, i.e. any local assignments made by the
(function) or {code) discussed below remain in effect after the loop.

\seq_map_function:NN (seq var) (function)

Applies (function) to every (item) stored in the (seq war). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. To pass
further arguments to the (function), see \seq_map_tokens:Nn. The function \seq_map_-
inline:Nn is faster than \seq_map_function:NN for sequences with more than about 10
items.

\seq_map_inline:Nn (seq var) {(inline function)}

Applies (inline function) to every (item) stored within the (seq var). The (inline function)
should consist of code which will receive the (item) as #1. The (items) are returned from
left to right.

151

\seq_map_tokens:Nn % \seq_map_tokens:Nn (seq var) {(code)}

\seq_map_tokens:cn ¥ Analogue of \seq_map_function:NN which maps several tokens instead of a single func-

New: 2019-08-30 tion. The (code) receives each item in the (seq war) as a trailing brace group. For
instance,

\seq_map_tokens:Nn \1_my_seq { \prg_replicate:nn { 2 } }

expands to twice each item in the (seq var): for each item in \1_my_seq the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \seq_-
map_inline:Nn is typically faster but it is not expandable.

\seq_map_variable:NNn \seq_map_variable:NNn (seq var) (variable) {(code)}
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each (item) of the (seq var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(seq wvar), or its original value if the (seq var) is empty. The (items) are returned from
left to right.

\seq_map_indexed_function:NN * \seq_map_indexed_function:NN (seq var) (function)

New: 2018-05-03

Applies (function) to every entry in the (sequence variable). The {function) should have
signature :nn. It receives two arguments for each iteration: the (indez) (namely 1 for
the first entry, then 2 and so on) and the (item).

\seq_map_indexed_inline:Nn \seq_map_indexed_inline:Nn (seq var) {(inline function)}

New: 2018-05-03 Applies (inline function) to every entry in the (sequence variable). The (inline function)
should consist of code which receives the (index) (namely 1 for the first entry, then 2 and
so on) as #1 and the (item) as #2.

\seq_map_pairwise_function:NNN ¥¢ \seq_map_pairwise_function:NNN (seqi) (seqs) (function)
\seq_map_pairwise_function:(NcN|cNN|ccN)

New: 2023-05-10

Applies (function) to every pair of items (seq; -item)—(sego-item) from the two sequences,
returning items from both sequences from left to right. The (function) receives two n-type
arguments for each iteration. The mapping terminates when the end of either sequence is
reached (7.e. whichever sequence has fewer items determines how many iterations occur).

152

\seq_map_break: w

Updated: 2012-06-29

\seq_map_break:n w

Updated: 2012-06-29

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22
Updated: 2020-07-16

\seq_map_break:

Used to terminate a \seq_map_. .. function before all entries in the (seq var) have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \1l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\seq_map_break:n {{code)}

Used to terminate a \seq_map_. .. function before all entries in the (seq var) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\seq_set_map:NNn (seq var:) (seq varz) {(inline function)}

Applies (inline function) to every (item) stored within the (seq wvars). The (inline
function) should consist of code which will receive the (item) as #1. The sequence result-
ing applying (inline function) to each (item) is assigned to (seq vary).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

153

\seq_set_map_x:NNn
\seq_gset_map_x:NNn

\seq_set_map_x:NNn (seq vari) (seq varz) {(inline function)}

Applies (inline function) to every (item) stored within the (seq wvars). The (inline

New: 2020-07-16 fynction) should consist of code which will receive the (item) as #1. The sequence result-

\seq_count:N *
\seq_count:c *

New: 2012-07-13

\seq_use:Nnnn *
\seq_use:cnnn *

New: 2013-05-26

ing from x-expanding (inline function) applied to each (item) is assigned to (seq vary).
As such, the code in (inline function) should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_count:N (seq var)

Leaves the number of items in the (seq var) in the input stream as an (integer denotation).
The total number of items in a (seq var) includes those which are empty and duplicates,
i.e. every item in a (seq var) is unique.

19.8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error is raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | > {a |l b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, ¢, de, and f” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

154

\seq_use:Nn *
\seq_use:cn *

New: 2013-05-26

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN

\seq_pop:cN

Updated: 2012-05-14

\seq_gpop: NN

\seq_gpop:cN

Updated: 2012-05-14

\seq_get :NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error is raised if the variable
does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1l_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

19.9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (seq var) (token list variable)

Reads the top item from a (seq var) into the (token list variable) without removing it
from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty the
(token list variable) is set to the special marker \q_no_value.

\seq_pop:NN (seq var) (token list variable)

Pops the top item from a (seq var) into the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop:NN (seq var) (token list variable)

Pops the top item from a (seq var) into the (token list variable). The (seq var) is modified
globally, while the (token list variable) is assigned locally. If (seq var) is empty the (token
list variable) is set to the special marker \q_no_value.

\seq_get:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the top item from a (seq var) in the (token list variable)
without removing it from the (seq var). The (token list variable) is assigned locally.

155

\seq_pop:NNTF

\seq_pop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the top item from the (seq var) in the (token list variable),
i.e. removes the item from the (seq var). Both the {seq var) and the (token list variable)
are assigned locally.

\seq_gpop:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the top item from the (seq var) in the (token list variable),
i.e. removes the item from the (seq var). The (seq var) is modified globally, while the
(token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (seq var) {(item)}

\seq_push: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gpush:Nn

\seq_gpush: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {(item)} to the top of the (seq var).

19.10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
(sequence variable) only has distinct items, use \seq_remove_duplicates:N (sequence
variable). This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set (seq var) are straightforward. For instance, \seq_count:N
(seq var) expands to the number of items, while \seq_if_in:NnTF (seq var) {(item)}
tests if the (item) is in the set.

Adding an (item) to a set (seq var) can be done by appending it to the (seq var) if
it is not already in the (seq var):

\seq_if_in:NnF (seq var) {(item)}
{ \seq_put_right:Nn (seq var) {(item)} }

Removing an (item) from a set (seq var) can be done using \seq_remove_all:Nn,
\seq_remove_all:Nn (seq var) {(item)}

The intersection of two sets (seq var;) and (seq vary) can be stored into (seq vars)
by collecting items of (seq var;) which are in (seq vars).

156

\seq_clear:N (seq vars)
\seq_map_inline:Nn (seq vari)
{
\seq_if_in:NnT (seq vary) {#1}
{ \seq_put_right:Nn (seq vars) {#1} }
}

The code as written here only works if (seq vars) is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\1__(pkg)_internal_seq, then (seq vars) should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets (seq var;) and (seq vars) can be stored into (seq vars) through

\seq_concat:NNN (seq vars) (seq vari) (seq vars)
\seq_remove_duplicates:N (seq vars)

or by adding items to (a copy of) (seq var;) one by one

\seq_set_eq:NN (seq vars) (seq vari)
\seq_map_inline:Nn (seq vars)
{
\seq_if_in:NnF (seq vars) {#1}
{ \seq_put_right:Nn (seq vars) {#1} }
}

The second approach is faster than the first when the (seq vary) is short compared to
(seq vary).

The difference of two sets (seq vary) and (seq vary) can be stored into (seq vars) by
removing items of the (seq vare) from (a copy of) the (seq vary) one by one.

\seq_set_eq:NN (seq vars) (seq vary)
\seq_map_inline:Nn (seq vars)
{ \seq_remove_all:Nn (seq vars) {#1} }

The symmetric difference of two sets (seq var;) and (seq vars) can be stored into
(seq vars) by computing the difference between (seq vari) and (seq vars) and storing the
result as \1__(pkg)_internal_seq, then the difference between (seq vary) and (seq vary),
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \1__(pkg)_internal_seq (seq varp)
\seq_map_inline:Nn (seq vars)

{ \seq_remove_all:Nn \1__(pkg)_internal_seq {#1} }
\seq_set_eq:NN (seq vars) (seq vars)
\seq_map_inline:Nn (seq varj)

{ \seq_remove_all:Nn (seq vars) {#1} }
\seq_concat:NNN (seq vars) (seq vars) \1__(pkg)_internal_seq

19.11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

New: 2012-07-02

157

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
\seq_show:c

Updated: 2021-04-29

\seq_log:N
\seq_log:c

New: 2014-08-12

Updated: 2021-04-29

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

19.12 Viewing sequences

\seq_show:N (seq var)

Displays the entries in the (seq var) in the terminal.

\seq_log:N (seq var)
Writes the entries in the (seq var) in the log file.

158

Chapter 20

The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, =, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“(int expr)”).

20.1 Integer expressions

Throughout this module, (almost) all n-type argument allow for an (intezpr) argument
with the following syntax. The (integer expression) should consist, after expansion, of +,
-, *,/, (,) and of course integer operands. The result is calculated by applying standard
mathematical rules with the following peculiarities:

e / denotes division rounded to the closest integer with ties rounded away from zero;

e there is an error and the overall expression evaluates to zero whenever the absolute
value of any intermediate result exceeds 23! — 1, except in the case of scaling oper-
ations axb/c, for which a*b may be arbitrarily large (but the operands a, b, ¢ are
still constrained to an absolute value at most 23! — 1);

o parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, —, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_show:n { 5+ 4 %3 - (3+4x*x5) }
and

\tl_new:N \l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_show:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

159

show the same result —6 because \1_my_t1 expands to the integer denotation 5 while the
integer variable \1_my_int takes the value 4. As the (integer expression) is fully expanded
from left to right during evaluation, fully expandable and restricted-expandable functions
can both be used, and \exp_not:n and its variants have no effect while \exp_not :N may
incorrectly interrupt the expression.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore should be terminated by a space if used in
\int_value:w or in a TEX-style integer assignment.

As all TEX integers, integer operands can also be: \value{(BTgX 2% counter)}; dimension
or skip variables, converted to integers in sp; the character code of some character given as
“(char) or ‘\(char); octal numbers given as ’ followed by digits from 0 to 7; or hexadecimal
numbers given as " followed by digits and upper case letters from A to F.

160

\int_eval:n *

\int_eval:w *

New: 2018-03-30

\int_eval:n {(int expr)}

Evaluates the (int expr) and leaves the result in the input stream as an integer denotation:
for positive results an explicit sequence of decimal digits not starting with 0, for negative
results - followed by such a sequence, and 0 for zero. The (int expr) should consist, after
expansion, of +, - %,/ (,) and of course integer operands. The result is calculated by
applying standard mathematical rules with the following peculiarities:

e / denotes division rounded to the closest integer with ties rounded away from zero;

e there is an error and the overall expression evaluates to zero whenever the ab-
solute value of any intermediate result exceeds 23! — 1, except in the case of scaling
operations axb/c, for which a*b may be arbitrarily large;

o parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_eval:n { 56+ 43 - (3 +4%*5)}
and

\tl_new:N \1l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

evaluate to —6 because \1_my_t1 expands to the integer denotation 5. As the (int expr)
is fully expanded from left to right during evaluation, fully expandable and restricted-
expandable functions can both be used, and \exp_not:n and its variants have no effect
while \exp_not:N may incorrectly interrupt the expression.

TgXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore requires suitable termination if used in a TEX-
style integer assignment.

As all TEX integers, integer operands can also be dimension or skip variables, converted to
integers in sp, or octal numbers given as ’ followed by digits other than 8 and 9, or hexadecimal
numbers given as " followed by digits or upper case letters from A to F, or the character code of
some character or one-character control sequence, given as ‘(char).

\int_eval:w (int expr)

Evaluates the (int expr) as described for \int_eval:n. The end of the expression is
the first token encountered that cannot form part of such an expression. If that token
is \scan_stop: it is removed, otherwise not. Spaces do not terminate the expression.
However, spaces terminate explict integers, and this may terminate the expression: for
instance, \int_eval:w 1,+,1,9 (with explicit space tokens inserted using ~ in a code
setting) expands to 29 since the digit 9 is not part of the expression. Expansion details,
etc., are as given for \int_eval:n.

161

\int_sign:n *

New: 2018-11-03

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn *

Updated: 2012-09-26

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn *
\int_min:nn *

Updated: 2012-09-26

\int_mod:nn %

Updated: 2012-09-26

\int_new:N
\int_new:c

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_sign:n {(int expr)}

Evaluates the (int expr) then leaves 1 or 0 or —1 in the input stream according to the
sign of the result.

\int_abs:n {(int expr)}

Evaluates the (int expr) as described for \int_eval:n and leaves the absolute value of
the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(int expri)} {(int expr:)}

Evaluates the two (int expr)s as described earlier, then divides the first value by the
second, and rounds the result to the closest integer. Ties are rounded away from zero.
Note that this is identical to using / directly in an (int expr). The result is left in the
input stream as an (integer denotation) after two expansions.

\int_div_truncate:nn {(int expri)} {(int expr:)}

Evaluates the two (int expr)s as described earlier, then divides the first value by the
second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an (integer denotation)
after two expansions.

\int_max:nn {(int expri)} {(int expr:)}
\int_min:nn {(int expri)} {(int exprs)}

Evaluates the (int expr)s as described for \int_eval:n and leaves either the larger or
smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(int expri)} {(int exprs)}

Evaluates the two (int expr)s as described earlier, then calculates the integer remainder
of dividing the first expression by the second. This is obtained by subtracting \int_-
div_truncate:nn {(int expr)} {(int exprz)} times (int exprs) from (int expry). Thus,
the result has the same sign as (int expry) and its absolute value is strictly less than that
of (int expry). The result is left in the input stream as an (integer denotation) after two
expansions.

20.2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) is initially equal to 0.

\int_const:Nn (integer) {(int expr)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) is set globally to the (int expr).

162

\int_zero:N \int_zero:N (integer)

\int_zero:c)
\int_gzero:N Sets<zn¢69€r>t0 0.

\int_gzero:c

\int_zero_new:N \int_zero_new:N (integer)
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

New: 2011-12-13

\int_set_eq:NN \int_set_eq:NN (integer;) (integers)
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN

\int_gset_eq:(cN|Nc|cc)

Sets the content of (integer;) equal to that of (integers).

\int_if_exist_p:N (int)
\int_if_exist:NTF (int) {(true code)} {(false code)}

Tests whether the (int) is currently defined. This does not check that the (int) really is
an integer variable.

\int_if_exist_p:N «
\int_if_exist_p:c %
\int_if_exist:NTF x
\int_if_ exist:cTF x

New: 2012-03-03

20.3 Setting and incrementing integers

\int_add:Nn \int_add:Nn (integer) {(int expr)}
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Adds the result of the (int expr) to the current content of the (integer).

Updated: 2011-10-22

\int_decr:N \int_decr:N (integer)
\int_decr:c

\int_gdecr:N
\int_gdecr:c

Decreases the value stored in (integer) by 1.

\int_incr:N \int_incr:N (integer)
\int_incr:c

\int_gincr:N
\int_gincr:c

Increases the value stored in (integer) by 1.

\int_set:Nn \int_set:Nn (integer) {(int expr)}
\int_set:cn
\int_gset:Nn
\int_gset:cn

Sets (integer) to the value of (int expr), which must evaluate to an integer (as described
for \int_eval:n).

Updated: 2011-10-22

163

\int_sub:Nn \int_sub:Nn (integer) {(int expr)}
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Subtracts the result of the (int expr) from the current content of the (integer).

Updated: 2011-10-22
20.4 Using integers

\int_use:N % \int_use:N (integer)

\mt‘us—e:c* Recovers the content of an (integer) and places it directly in the input stream. An error

Updated: 2011-10-22 ig raised if the variable does not exist or if it is invalid. Can be omitted in places where an
(integer) is required (such as in the first and third arguments of \int_compare :nNnTF).

TgXhackers note: \int_use:N is the TEX primitive \the: this is one of several ITEX3
names for this primitive.

20.5 Integer expression conditionals

\int_compare_p:nNn x \int_compare_p:nNn {(int expri)} (relation) {(int expra)}
\int_compare:nNnTF % \int_compare:nNnTF

{{int expri)} (relation) {(int exprs)}

{(true code)} {(false code)}

This function first evaluates each of the (int expr)s as described for \int_eval:n. The
two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

This function is less flexible than \int_compare:nTF but around 5 times faster.

164

\int_compare_p:n *
\int_compare:nTF *

Updated: 2013-01-13

\int_compare_p:n
{

(int expri) (relation;)

(int exprn) (relationn)
(int exprn41)
}
\int_compare:nTF
{

int expri relation;
P.

(int exprn) (relationy)
(int exprn+1)

}

{(true code)} {(false code)}

This function evaluates the (int expr)s as described for \int_eval:n and compares con-
secutive result using the corresponding (relation), namely it compares (int expr;) and
(int expre) using the (relationy), then (int exprs) and (int exprs) using the (relations),
until finally comparing (int expry) and (int expryi1) using the (relationy). The test
yields true if all comparisons are true. Each (int expr) is evaluated only once, and the
evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

This function is more flexible than \int_compare :nNnTF but around 5 times slower.

165

\int_case:nn *

\int_case:nnTF x

New: 2013-07-24

\int_if_even_p:n
\int_if_even:nTF
\int_if_odd_p:n
\int_if_odd:nTF

X % X ot

\int_if_zero_p:n *
\int_if_zero:nTF x

New: 2023-05-17

\int_do_until:nNnn 3%

\int_case:nnTF {(test int expr)}
{
{(int expr case;)} {{code casei)}
{(int expr case:)} {(code cases)}

{(int expr case,)} {{code case,)}

}

{(true code)}

{(false code)}
This function evaluates the (test int expr) and compares this in turn to each of the (int
expr cases). If the two are equal then the associated (code) is left in the input stream and
other cases are discarded. If any of the cases are matched, the (true code) is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the (false code) is inserted. The function \int_case:nn, which does nothing if there is
no match, is also available. For example

\int_case:nnF

{25}
{
{5} { Small }
{4+63} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

\int_if_odd_p:n {(int expr)}
\int_if_odd:nTF {(int expr)}
{(true code)} {(false code)}
This function first evaluates the (int expr) as described for \int_eval:n. It then evalu-
ates if this is odd or even, as appropriate.

\int_if_zero_p:n {(int expr)}
\int_if_zero:nTF {(int expr)}
{(true code)} {(false code)}

This function first evaluates the (int ezpr) as described for \int_eval:n. It then evalu-
ates if this is zero or not.

20.6 Integer expression loops

\int_do_until:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (int expr)s as described for \int_compare:nNnTF. If the test
is false then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is true.

166

\int_do_while:nNnn 3

\int_until_do:nNnn 3%

\int_while_do:nNnn 3

\int_do_until:nn

Updated: 2013-01-13

\int_do_while:nn 3

Updated: 2013-01-13

\int_until_do:nn %

Updated: 2013-01-13

\int_while_do:nn w

Updated: 2013-01-13

\int_do_while:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (int ezpr)s as described for \int_compare:nNnTF. If the test
is true then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is false.

\int_until_do:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Evaluates the relationship between the two (int expr)s as described for \int_compare :nNnTF,
and then places the (code) in the input stream if the (relation) is false. After the (code)
has been processed by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Evaluates the relationship between the two (int expr)s as described for \int_compare :nNnTF,
and then places the (code) in the input stream if the (relation) is true. After the (code)
has been processed by TEX the test is repeated, and a loop occurs until the test is false.

\int_do_until:nn {({integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the ({integer
relation) as described for \int_compare:nTF. If the test is false then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is true.

\int_do_while:nn {(integer relation)} {{code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is false.

\int_until_do:nn {({integer relation)} {(code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

167

\int_step_function:nN X e
\int_step_function:nnN 5%
\int_step_function:nnnN 5¢

New: 2012-06-04
Updated: 2018-04-22

\int_step_inline:nn
\int_step_inline:nnn
\int_step_inline:nnnn

New: 2012-06-04
Updated: 2018-04-22

\int_step_variable:nNn
\int_step_variable:nnNn
\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2018-04-22

20.7 Integer step functions

\int_step_function:nN {(final value)} (function)
\int_step_function:nnN {(initial value)} {(final value)} (function)
\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be integer expressions. The (function) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one numerical argument.
For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print
[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5]

The functions \int_step_function:nN and \int_step_function:nnN both use a
fixed (step) of 1, and in the case of \int_step_function:nN the (initial value) is also
fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_inline:nn {(final value)} {(code)}
\int_step_inline:nnn {(initial value)} {(final value)} {({code)}
\int_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}
This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream with #1 replaced by the current (value). Thus the (code) should define a function
of one argument (#1).

The functions \int_step_inline:nn and \int_step_inline:nnn both use a fixed
(step) of 1, and in the case of \int_step_inline:nn the (initial value) is also fixed as 1.
These functions are provided as simple short-cuts for code clarity.

\int_step_variable:nNn {(final value)} (tl var) {(code)}
\int_step_variable:nnNn {(initial value)} {(final value)} (tl1 var) {({code)}
\int_step_variable:nnnNn {(initial value)} {(step)} {(final value)} (tl var)
{(code)}
This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream, with the (¢l var) defined as the current (value). Thus the (code) should make
use of the (¢ var).

The functions \int_step_variable:nNn and \int_step_variable:nnNn both use
a fixed (step) of 1, and in the case of \int_step_variable:nNn the (initial value) is also
fixed as 1. These functions are provided as simple short-cuts for code clarity.

168

\int_to_arabic:n *

Updated: 2011-10-22

\int_to_alph:n *
\int_to_Alph:n *

Updated: 2011-09-17

\int_to_symbols:nnn *

Updated: 2011-09-17

20.8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(int expr)}

Places the value of the (int expr) in the input stream as digits, with category code 12
(other).

\int_to_alph:n {(int expr)}

Evaluates the (int ezpr) and converts the result into a series of letters, which are then left
in the input stream. The conversion rule uses the 26 letters of the English alphabet, in
order, adding letters when necessary to increase the total possible range of representable
numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_symbols:nnn

{(int expr)} {(total symbols)}

{{value to symbol mapping)}
This is the low-level function for conversion of an (int ezpr) into a symbolic form (often
letters). The (total symbols) available should be given as an integer expression. Values
are actually converted to symbols according to the (value to symbol mapping). This
should be given as (total symbols) pairs of entries, a number and the appropriate symbol.
Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1}¥{a?
{ 23{v?}
{26 {z1?}
}
}

169

\int_to_bin:n *

New: 2014-02-11

\int_to_hex:n *
\int_to_Hex:n *

New: 2014-02-11

\int_to_oct:n *

New: 2014-02-11

\int_to_base:nn x
\int_to_Base:nn x

Updated: 2014-02-11

\int_to_roman:n
\int_to_Roman:n %

Updated: 2011-10-22

\int_from_alph:n *

Updated: 2014-08-25

\int_from_bin:n x

New: 2014-02-11
Updated: 2014-08-25

\int_to_bin:n {(int expr)}

Calculates the value of the (int ezpr) and places the binary representation of the result
in the input stream.

\int_to_hex:n {(int expr)}

Calculates the value of the (int expr) and places the hexadecimal (base 16) representation
of the result in the input stream. Letters are used for digits beyond 9: lower case letters
for \int_to_hex:n and upper case ones for \int_to_Hex:n. The resulting tokens are
digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_oct:n {(int expr)}

Calculates the value of the (int expr) and places the octal (base 8) representation of the
result in the input stream. The resulting tokens are digits with category code 12 (other)
and letters with category code 11 (letter).

\int_to_base:nn {(int expr)} {(base)}

Calculates the value of the (int expr) and converts it into the appropriate representation
in the (base); the later may be given as an integer expression. For bases greater than
10 the higher “digits” are represented by letters from the English alphabet: lower case
letters for \int_to_base:n and upper case ones for \int_to_Base:n. The maximum
(base) value is 36. The resulting tokens are digits with category code 12 (other) and
letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_roman:n {(int expr)}

Places the value of the (int ezpr) in the input stream as Roman numerals, either lower
case (\int_to_roman:n) or upper case (\int_to_Roman:n). If the value is negative or
zero, the output is empty. The Roman numerals are letters with category code 11 (letter).
The letters used are mdclxvi, repeated as needed: the notation with bars (such as v for
5000) is not used. For instance \int_to_roman:n { 8249 } expands to mmmmmmmmccxlix.

20.9 Converting from other formats to integers

\int_from_alph:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are first converted to a string, with no expansion. Lower and
upper case letters from the English alphabet may be used, with “a” equal to 1 through

to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is
the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_bin:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream. The (binary number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

170

\int_from_hex:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_oct:n *

New: 2014-02-11
Updated: 2014-08-25

\int_from_roman:n *

Updated: 2014-08-25

\int_from_base:nn *

Updated: 2014-08-25

\int_rand:nn *

New: 2016-12-06
Updated: 2018-04-27

\int_rand:n *

New: 2018-05-05

\int_show:N

\int_show:c

\int_from_hex:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters. The (hezadecimal number) is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_oct:n {({octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream. The (octal number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this in
the input stream. The (roman numeral) is first converted to a string, with no expansion.
The (roman numeral) may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value is —1. This is the inverse function
of \int_to_roman:n and \int_to_Roman:n.

\int_from_base:nn {(number)} {(base)}

Converts the (number) expressed in (base) into the appropriate value in base 10. The
(number) is first converted to a string, with no expansion. The (number) should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum (base) value is 36. This is the inverse function of \int_to_base:nn and \int_-
to_Base:nn.

20.10 Random integers

\int_rand:nn {(int expri)} {(int expr:)}

Evaluates the two (int expr)s and produces a pseudo-random number between the two
(with bounds included). This is not available in older versions of X#TEX.

\int_rand:n {(int expr)}

Evaluates the (int expr) then produces a pseudo-random number between 1 and the (int
expr) (included). This is not available in older versions of XHTEX.

20.11 Viewing integers

\int_show:N (integer)

Displays the value of the (integer) on the terminal.

171

\int_show:n \int_show:n {(int expr)}

New: 2011-11-22 Displays the result of evaluating the (int ezpr) on the terminal.
Updated: 2015-08-07

\int_log:N \int_log:N (integer)

i log: . . .
\int_log:c Writes the value of the (integer) in the log file.
New: 2014-08-22

Updated: 2015-08-03

\int_log:n \int_log:n {(int expr)}

New: 2014-08-22 Writes the result of evaluating the (int expr) in the log file.
Updated: 2016-08-07

20.12 Constant integers

\c_zero_int Integer values used with primitive tests and assignments: their self-terminating nature
\c_one_int pakes these more convenient and faster than literal numbers.

New: 2018-05-07

\c_max_int The maximum value that can be stored as an integer.

\c_max_register_int Maximum number of registers.

\c_max_char_int Maximum character code completely supported by the engine.

20.13 Scratch integers

\1_tmpa_int Scratch integer for local assignment. These are never used by the kernel code, and so
\1_tmpb_int are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_int Scratch integer for global assignment. These are never used by the kernel code, and so
\g_tmpb_int are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

172

20.14 Direct number expansion

\int_value:w * \int_value:w (integer)

New: 2018-03-27

\if_int_compare:w *

\if_case:w *

\or:

*

\int_value:w (integer denotation) (optional space)

Expands the following tokens until an (integer) is formed, and leaves a normalized form
(no leading sign except for negative numbers, no leading digit 0 except for zero) in the
input stream as category code 12 (other) characters. The (integer) can consist of any
number of signs (with intervening spaces) followed by

« an integer variable (in fact, any TEX register except \toks) or
o explicit digits (or by ’(octal digits) or "(hexadecimal digits) or ‘(character)).

In this last case expansion stops once a non-digit is found; if that is a space it is removed
as in f-expansion, and so \exp_stop_f: may be employed as an end marker. Note that
protected functions are expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable
for use in cases where a number is required “directly”. In general, \int_eval:n is the
preferred approach to generating numbers.

TEXhackers note: This is the TEX primitive \number.

20.15 Primitive conditionals

\if_int_compare:w (integer;) (relation) (integers)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w (integer) (caseo)

\or: (casei)

\or:

\else: (default)
\fi:

Selects a case to execute based on the value of the (integer). The first case ({casep)) is
executed if (integer) is 0, the second ((case;)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

173

\if_int_odd:w * \if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifodd.

174

\flag_new:n

\flag_clear:n

Chapter 21

The 13flag package:
Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its (height). In expansion-
only contexts, a flag can only be “raised”: this increases the (height) by 1. The (height)
can also be queried expandably. However, decreasing it, or setting it to zero requires
non-expandable assignments.

Flag variables are always local. They are referenced by a (flag name) such as str_-
missing. The (flag name) is used as part of \use:c constructions hence is expanded at
point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition
has occurred during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by I3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height. Flags should not be used unless
unavoidable.

21.1 Setting up flags

\flag_new:n {(flag name)}

Creates a new flag with a name given by (flag name), or raises an error if the name is
already taken. The (flag name) may not contain spaces. The declaration is global, but
flags are always local variables. The (flag) initially has zero height.

\flag_clear:n {(flag name)}
The (flag)’s height is set to zero. The assignment is local.

175

\flag_clear_new:n

\flag_show:n

\flag_log:

n

\flag_if_exist_p:n
\flag_if_exist:nTF

\flag_if_raised_p:n
\flag_if_raised:nTF

\flag_height:n

*

\flag_raise:n

*

\flag_ensure_raised:n

*

New: 2023-04-25

\flag_clear_new:n {(flag name)}

Ensures that the (flag) exists globally by applying \flag_new:n if necessary, then applies
\flag_clear:n, setting the height to zero locally.

\flag_show:n {(flag name)}
Displays the (flag)’s height in the terminal.

\flag_log:n {(flag name)}
Writes the (flag)’s height to the log file.

21.2 Expandable flag commands

\flag_if_exist_p:n {(flag name)}
\flag_if_exist:nTF {(flag name)} {(true code)} {(false code)}

This function returns true if the (flag name) references a flag that has been defined
previously, and false otherwise.

\flag_if_raised_p:n {(flag name)}
\flag_if_raised:nTF {(flag name)} {(true code)} {(false code)}

This function returns true if the (flag) has non-zero height, and false if the (flag) has
zero height.

\flag_height:n {(flag name)}
Expands to the height of the (flag) as an integer denotation.

\flag_raise:n {(flag name)}
The (flag)’s height is increased by 1 locally.

\flag_ensure_raised:n {(flag name)}

Ensures the (flag) is raised by making its height at least 1, locally.

176

Chapter 22

The 13clist package
Comma separated lists

Comma lists (in short, clist) contain ordered data where items can be added to the
left or right end of the list. This data type allows basic list manipulations such as
adding/removing items, applying a function to every item, removing duplicate items,
extracting a given item, using the comma list with specified separators, and so on. Se-
quences (defined in 13seq) are safer, faster, and provide more features, so they should
often be preferred to comma lists. Comma lists are mostly useful when interfacing with
IXTEX 2¢ or other code that expects or provides items separated by commas.

Several items can be added at once. To ease input of comma, lists from data provided
by a user outside an \ExplSyntaxOn ... \ExplSyntax0ff block, spaces are removed
from both sides of each comma-delimited argument upon input. Blank arguments are
ignored, to allow for trailing commas or repeated commas (which may otherwise arise
when concatenating comma lists “by hand”). In addition, a set of braces is removed if
the result of space-trimming is braced: this allows the storage of any item in a comma
list. For instance,

\clist_new:N \1_my_clist
\clist_put_left:Nn \1_my_clist { ~a~ , ~{b}~ , c~\d }
\clist_put_right:Nn \l_my_clist { ~{e~} , , {{f}} , }

results in \1_my_clist containing a,b,c~\d,{e~},{{f}} namely the five items a, b,
c~\d, e~ and {f}. Comma lists normally do not contain empty or blank items so the
following gives an empty comma, list:

\clist_clear_new:N \1l_my_clist
\clist_set:Nn \1_my_clist { , ~, , }
\clist_if_empty:NTF \1l_my_clist { true } { false }

and it leaves true in the input stream. To include an “unsafe” item (empty, or one that
contains a comma, or starts or ends with a space, or is a single brace group), surround
it with braces.

Any n-type token list is a valid comma list input for I13clist functions, which will
split the token list at every comma and process the items as described above. On the
other hand, N-type functions expect comma list variables, which are particular token
list variables in which this processing of items (and removal of blank items) has already

177

\clist_new:N
\clist_new:c

\clist_const:Nn
\clist_const:(Nx|cn|cx)

New: 2014-07-05

\clist_clear:N
\clist_clear:c
\clist_gclear:N

\clist_gclear:c

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

\clist_set_eq:NN
\clist_set_eq:(cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

occurred. Because comma list variables are token list variables, expanding them once
yields their items separated by commas, and I3tl functions such as \t1l_show:N can be
applied to them. (These functions often have |13clist analogues, which should be preferred.)

Almost all operations on comma lists are noticeably slower than those on sequences
so converting the data to sequences using \seq_set_from_clist:Nn (see I3seq) may be
advisable if speed is important. The exception is that \clist_if_in:NnTF and \clist_-
remove_duplicates:N may be faster than their sequence analogues for large lists. How-
ever, these functions work slowly for “unsafe” items that must be braced, and may pro-
duce errors when their argument contains {, } or # (assuming the usual TEX category
codes apply). The sequence data type should thus certainly be preferred to comma lists
to store such items.

22.1 Creating and initialising comma lists

\clist_new:N (clist var)

Creates a new (clist var) or raises an error if the name is already taken. The declaration
is global. The (clist var) initially contains no items.

\clist_const:Nn (clist var) {(comma list)}

Creates a new constant (clist var) or raises an error if the name is already taken. The
value of the (clist var) is set globally to the (comma list).

\clist_clear:N (clist var)

Clears all items from the (clist var).

\clist_clear_new:N (clist var)

Ensures that the (clist var) exists globally by applying \clist_new:N if necessary, then
applies \clist_(g)clear:N to leave the list empty.

\clist_set_eq:NN (comma listi) (comma lista)

Sets the content of (comma list;) equal to that of (comma listz). To set a token list
variable equal to a comma list variable, use \t1_set_eq:NN. Conversely, setting a comma
list variable to a token list is unadvisable unless one checks space-trimming and related
issues.

\clist_set_from_seq:NN \clist_set_from_seq:NN (clist var) (sequence)
\clist_set_from_seq:(cN|[Nc|cc)
\clist_gset_from_seq:NN

\clist_gset_from_seq:

(cN|N¢|cc)

New: 2014-07-17

Converts the data in the (sequence) into a (clist var): the original (sequence) is un-
changed. Items which contain either spaces or commas are surrounded by braces.

178

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat :NNN
\clist_gconcat:ccc

\clist_if_exist_p:N *
\clist_if_exist_p:c =*
\clist_if_exist:NTF =
\clist_if exist:cTF *

New: 2012-03-03

\clist_concat:NNN (comma listi) (comma lists) (comma lists)

Concatenates the content of (comma listz) and (comma lists) together and saves the
result in (comma list;). The items in (comma listy) are placed at the left side of the new
comma list.

\clist_if_exist_p:N (clist var)
\clist_if_exist:NTF (clist var) {(true code)} {(false code)}

Tests whether the (clist var) is currently defined. This does not check that the (clist var)
really is a comma list.

22.2 Adding data to comma lists

\clist_set:Nn

\clist_set:Nn (clist var) {(itemi),...,{item,)}

\clist_set:(NV|No|Nx|cn|cV|co|cx)

\clist_gset:Nn

\clist_gset:(NV|No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets (clist var) to contain the (itemns), removing any previous content from the variable.
Blank items are omitted, spaces are removed from both sides of each item, then a set of
braces is removed if the resulting space-trimmed item is braced. To store some (tokens)
as a single (item) even if the (tokens) contain commas or spaces, add a set of braces:
\clist_set:Nn (clist var) { {(tokens)} }.

\clist_put_left:Nn

\clist_put_left:Nn (clist var) {(itemi),...,(itemn)}

\clist_put_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\clist_gput_left:Nn

\clist_gput_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Updated: 2011-09-05

Appends the (items) to the left of the (clist var). Blank items are omitted, spaces are
removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some (tokens) as a single (item) even if the
(tokens) contain commas or spaces, add a set of braces: \clist_put_left:Nn (clist var)

{ {(tokens)} }.

\clist_put_right:Nn

\clist_put_right:Nn (clist var) {{(item),...,{item,)}

\clist_put_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\clist_gput_right:Nn

\clist_gput_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Updated: 2011-09-05

Appends the (items) to the right of the (clist var). Blank items are omitted, spaces are
removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some (tokens) as a single (item) even if the
(tokens) contain commas or spaces, add a set of braces: \clist_put_right:Nn (clist var)

{ {(tokens)} }.

179

22.3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N \clist_remove_duplicates:N (clist var)
\clist_remove_duplicates:c
\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

Removes duplicate items from the (clist var), leaving the left most copy of each item in the
(clist var). The (item) comparison takes place on a token basis, as for \t1_if_eq:nnTF.

TgXhackers note: This function iterates through every item in the (clist var) and does
a comparison with the (items) already checked. It is therefore relatively slow with large comma
lists. Furthermore, it may fail if any of the items in the {clist var) contains {, }, or # (assuming
the usual TEX category codes apply).

\clist_remove_all:Nn

\clist_remove_all:Nn (clist var) {(item)}

\clist_remove_all:(cn|NV|cV)

\clist_gremove_all:Nn

\clist_gremove_all:(cn|NV|cV)

Updated: 2011-09-06

\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n

New: 2014-07-18

Removes every occurrence of (item) from the (clist var). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

TgXhackers note: The function may fail if the (item) contains {, }, or # (assuming the
usual TEX category codes apply).

\clist_reverse:N (clist var)

Reverses the order of items stored in the (clist var).

\clist_reverse:n {({comma list)}

Leaves the items in the (comma list) in the input stream in reverse order. Contrarily
to other what is done for other n-type (comma list) arguments, braces and spaces are
preserved by this process.

TEXhackers note: The result is returned within \unexpanded, which means that the
comma list does not expand further when appearing in an x-type or e-type argument expansion.

180

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

New: 2017-02-06

\clist_if_empty_p:N
\clist_if_empty_p:c
\clist_if_empty:NTF
\clist_if_empty:cTF

I S S

\clist_if_empty_p:n *
\clist_if_empty:nTF *

New: 2014-07-05

\clist_sort:Nn (clist var) {{comparison code)}

Sorts the items in the (clist var) according to the (comparison code), and assigns the
result to {clist var). The details of sorting comparison are described in Section 6.1.

22.4 Comma list conditionals

\clist_if_empty_p:N (clist var)
\clist_if_empty:NTF (clist var) {(true code)} {(false code)}

Tests if the (clist var) is empty (containing no items).

\clist_if_empty_p:n {(comma list)}

\clist_if_empty:nTF {(comma list)} {(true code)} {(false code)}

Tests if the (clist var) is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_in:NnTF

\clist_if_in:NnTF (clist var) {(item)} {(true code)} {(false code)}

\clist_if_in:(NV|No|cn|cV|co)TF

\clist_if_in:nnTF

\clist_if_in:(nV|no)TF

Updated: 2011-09-06

Tests if the (item) is present in the (clist var). In the case of an n-type (comma list), the
usual rules of space trimming and brace stripping apply. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , ¢ } { b } {true} {false}
yields true.

TEXhackers note: The function may fail if the (item) contains {, }, or # (assuming the
usual TEX category codes apply).

22.5 Mapping over comma lists

The functions described in this section apply a specified function to each item of a comma
list. All mappings are done at the current group level, i.e. any local assignments made
by the (function) or (code) discussed below remain in effect after the loop.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result
is passed to the mapped function. Thus, if the comma list that is being mapped is
{ay, o {{v}.}, L, {},.{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}’, an empty argument, and ‘c’.

181

\clist_map_function:NN
\clist_map_function:cN
\clist_map_function:nN %

Updated: 2012-06-29

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

\clist_map_tokens:Nn w
\clist_map_tokens:cn w
\clist_map_tokens:nn w

New: 2021-05-05

\clist_map_break: 3

Updated: 2012-06-29

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN (clist var) (function)

Applies (function) to every (item) stored in the (clist var). The (function) receives one
argument for each iteration. The (items) are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.

\clist_map_inline:Nn (clist var) {(inline function)}

Applies (inline function) to every (item) stored within the (clist var). The (inline
function) should consist of code which receives the (item) as #1. The (items) are re-
turned from left to right.

\clist_map_variable:NNn (clist var) (variable) {(code)}

Stores each (item) of the {clist var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(comma list), or its original value if there were no (item). The (items) are returned from
left to right.

\clist_map_tokens:Nn (clist var) {(code)}

\clist_map_tokens:nn {(comma list)} {({code)}

Calls (code) {(item)} for every (item) stored in the (clist var). The (code) receives each
(item) as a trailing brace group. If the (code) consists of a single function this is equivalent
to \clist_map_function:nN.

\clist_map_break:

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

182

\clist_map_break:n 5

Updated: 2012-06-29

\clist_count:N x
\clist_count:c *
\clist_count:n *

New: 2012-07-13

\clist_use:Nnnn *
\clist_use:cnnn *

New: 2013-05-26

\clist_map_break:n {(code)}

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\clist_count:N (clist var)

Leaves the number of items in the (clist var) in the input stream as an (integer
denotation). The total number of items in a (clist var) includes those which are du-
plicates, i.e. every item in a (clist var) is counted.

22.6 Using the content of comma lists directly

\clist_use:Nnnn (clist var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (clist var) in the input stream, with the appropriate (separator)
between the items. Namely, if the comma list has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which the
(separator between final two) is used. If the comma list has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the comma
list has a single item, it is placed in the input stream, and a comma list with no items
produces no output. An error is raised if the variable does not exist or if it is invalid.
For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , f }
\clist_use:Nnnn \1_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, ¢, de, and f£” in the input stream. The first separator argument is not
used in this case because the comma list has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

183

\clist_use:Nn *
\clist_use:cn x

New: 2013-05-26

\clist_use:nnnn x
\clist_use:nn *

New: 2021-05-10

\clist_get:NN
\clist_get:cN
\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14
Updated: 2019-02-16

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_use:Nn (clist var) {(separator)}

Places the contents of the {clist var) in the input stream, with the (separator) between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error is raised if the variable does not
exist or if it is invalid.

For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nn \1_tmpa_clist { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

\clist_use:nnnn (comma list) {(separator between two)}
{(separator between more than two)} {(separator between final two)}
\clist_use:nn (comma list) {(separator)}

Places the contents of the (comma list) in the input stream, with the appropriate
(separator) between the items. As for \clist_set:Nn, blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. The (separators) are then inserted in the same way as for
\clist_use:Nnnn and \clist_use:Nn, respectively.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

22.7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN (clist var) (token list variable)

Stores the left-most item from a (clist var) in the (token list variable) without removing
it from the (clist var). The (token list variable) is assigned locally. In the non-branching
version, if the (clist var) is empty the (token list variable) is set to the marker value
\g_no_value.

\clist_pop:NN (clist var) (token list variable)

Pops the left-most item from a (clist var) into the (token list variable), i.e. removes the
item from the comma list and stores it in the (token list variable). Both of the variables
are assigned locally.

184

\clist_gpop:NN \clist_gpop:NN (clist var) (token list variable)

\clist_gpop:cN Pops the left-most item from a (clist var) into the (token list variable), i.e. removes the

item from the comma list and stores it in the (token list variable). The (clist var) is
modified globally, while the assignment of the (token list variable) is local.

\clist_pop:NNTF \clist_pop:NNTF (clist var) (token list variable) {(true code)} {(false code)}

Nclist pop:eNIE o 4y (clist var) is empty, leaves the (false code) in the input stream. The value of

New: 2012-05-14 the (token list variable) is not defined in this case and should not be relied upon. If
the (clist var) is non-empty, pops the top item from the (clist var) in the (token list
variable), i.e. removes the item from the (clist var). Both the (clist var) and the (token
list variable) are assigned locally.

\clist_gpop:NNTF \clist_gpop:NNTF (clist var) (token list variable) {(true code)} {(false code)}

Nelist gpop:eNIE e 4y (clist var) is empty, leaves the (false code) in the input stream. The value of

New: 2012-05-14 the (token list variable) is not defined in this case and should not be relied upon. If the
(clist var) is non-empty, pops the top item from the (clist var) in the (token list variable),
i.e. removes the item from the (clist var). The (clist var) is modified globally, while the
(token list variable) is assigned locally.

\clist_push:Nn \clist_push:Nn (clist var) {(items)}
\clist_push:(NV|No|Nx|cn|cV|co|cx)

\clist_gpush:Nn

\clist_gpush:(NV|No|Nx|cn|cV|co|cx)

Adds the {(items)} to the top of the (clist var). Spaces are removed from both sides of
each item as for any n-type comma list.

22.8 Using a single item

\clist_item:Nn * \clist_item:Nn (clist var) {(int expr)}
\clist_item:cn x

\clist_item:nn Indexing items in the (clist var) from 1 at the top (left), this function evaluates the (int

expr) and leaves the appropriate item from the comma list in the input stream. If the
New: 2014-07-17 (4int expr) is negative, indexing occurs from the bottom (right) of the comma list. When
the (int expr) is larger than the number of items in the (clist var) (as calculated by
\clist_count:N) then the function expands to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

185

\clist_rand_item:N (clist var)
\clist_rand_item:n {(comma list)}

\clist_rand_item:N *
\clist_rand_item:c *

\clist_rand_item:n * gijoctg n pseudo-random item of the (clist var)/{comma list). If the (comma list) has no

New: 2016-12-06

\clist_show:N
\clist_show:c

Updated: 2021-04-29

\clist_show:n

Updated: 2013-08-03

\clist_log:N
\clist_log:c

New: 2014-08-22
Updated: 2021-04-29

\clist_log:n

New: 2014-08-22

\c_empty_clist

New: 2012-07-02

\1_tmpa_clist
\1_tmpb_clist

New: 2011-09-06

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

item, the result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

22.9 Viewing comma lists

\clist_show:N (clist var)

Displays the entries in the (clist var) in the terminal.

\clist_show:n {(tokens)}

Displays the entries in the comma list in the terminal.

\clist_log:N (clist var)

Writes the entries in the (clist var) in the log file. See also \clist_show:N which displays
the result in the terminal.

\clist_log:n {(tokens)}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

22.10 Constant and scratch comma lists

Constant that is always empty.

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

186

Chapter 23

The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TEX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such has two primary function categories:
\token_ for anything that deals with tokens and \peek_ for looking ahead in the token
stream.

Most functions we describe here can be used on control sequences, as those are tokens
as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below takes everything until
\if:w as an argument, despite the presence of other copies of \if:w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 23.7.

187

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 20156-11-12

\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

\char_generate:nn *

New: 2015-09-09
Updated: 2019-01-16

\c_catcode_active_space_tl

New: 2017-08-07

23.1 Creating character tokens

\char_set_active_eq:NN (char) (function)

Sets the behaviour of the (char) in situations where it is active (category code 13) to be
equivalent to that of the {function). The category code of the (char) is unchanged by
this process. The (function) may itself be an active character.

\char_set_active_eq:nN {(integer expression)} (function)

Sets the behaviour of the (char) which has character code as given by the (integer
expression) in situations where it is active (category code 13) to be equivalent to that
of the (function). The category code of the (char) is unchanged by this process. The
(function) may itself be an active character.

\char_generate:nn {(charcode)} {(catcode)}

Generates a character token of the given (charcode) and (catcode) (both of which may be
integer expressions). The (catcode) may be one of

o 1 (begin group)
o 2 (end group)

math toggle)

parameter)

(
(
3 (
4 (alignment)
e« 6(
7 (math superscript)
8 (math subscript)
« 10 (space)
o 11 (letter)
o 12 (other)
o 13 (active)

and other values raise an error. The (charcode) may be any one valid for the engine in
use, except that for (catcode) 10, (charcode) 0 is not allowed. Active characters cannot
be generated in older versions of XfqIEX. Another way to build token lists with unusual
category codes is \regex_replace:nnN {.*} {(replacement)} (¢l var).

TEXhackers note: Exactly two expansions are needed to produce the character.

Token list containing one character with category code 13, (“active”), and character code
32 (space).

188

\c_catcode_other_space_tl Token list containing one character with category code 12, (“other”), and character code

New: 2011-09-05 32 (space).

23.2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N <character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment :N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

189

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n *

\char_show_value_catcode:n

\char_set_lccode:nn

Updated: 2015-08-06

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

\char_set_catcode:nn {(int expri)} {(int expr:)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the (character) with character code given by
the (integer expression).

\char_show_value_catcode:n {({integer expression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lccode:nn {(int expr:i)} {(int exprs)}

Sets up the behaviour of the (character) when found inside \text_lowercase:n, such
that (character;) will be converted into {characters). The two (characters) may be spec-
ified using an (integer expression) for the character code concerned. This may include
the TEX ‘(character) method for converting a single character into its character code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

190

\char_value_lccode:n *

\char_show_value_lccode:n

\char_set_uccode:nn

Updated: 2015-08-06

\char_value_uccode:n *

\char_show_value_uccode:n

\char_set_mathcode:nn

Updated: 2015-08-06

\char_value_mathcode:n x

\char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the {character) with character code given by
the (integer expression).

\char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_uccode:nn {(int expri)} {(int exprs)}

Sets up the behaviour of the (character) when found inside \text_uppercase:n, such
that (character;) will be converted into {characters). The two (characters) may be spec-
ified using an (integer expression) for the character code concerned. This may include
the TEX ¢(character) method for converting a single character into its character code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the {character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn {(int expri)} {(int expra)}

This function sets up the math code of {character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

\char_set_sfcode:nn

Updated: 2015-08-06

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn {(int expri)} {(int exprs)}

This function sets up the space factor for the {character). The {(character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

191

\char_value_sfcode:n *

\char_show_value_sfcode:n

\1_char_active_seq

New: 2012-01-23
Updated: 2015-11-11

\1_char_special_seq

New: 2012-01-23
Updated: 2015-11-11

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_tl

\char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the {character) with character code given by the
(integer expression).

\char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

Used to track which tokens may require special handling at the document level as they
are (or have been at some point) of category (active) (catcode 13). Each entry in the
sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

Used to track which tokens will require special handling when working with verbatim-
like material at the document level as they are not of categories (letter) (catcode 11)
or (other) (catcode 12). Each entry in the sequence consists of a single escaped token,
for example \\ for the backslash or \{ for an opening brace. Escaped tokens should be
added to the sequence when they are defined for general document use.

23.3 Generic tokens

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

192

23.4 Converting tokens

\token_to_meaning:N * \token_to_meaning:N (token)

token_t ing:
\token_to_meaning:c Inserts the current meaning of the (foken) into the input stream as a series of characters

of category code 12 (other). This is the primitive TEX description of the (token), thus for
example both functions defined by \cs_set_nopar:Npn and token list variables defined
using \tl_new:N are described as macros.

TgXhackers note: This is the TEX primitive \meaning. The (token) can thus be an
explicit space tokens or an explicit begin-group or end-group character token ({ or } when
normal TEX category codes apply) even though these are not valid N-type arguments.

\token_to_str:N x \token_to_str:N (token)

\token_to_SET:C * (yonverts the given (token) into a series of characters with category code 12 (other). If

the (token) is a control sequence, this will start with the current escape character with
category code 12 (the escape character is part of the (token)). This function requires
only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed. The (token)
can thus be an explicit space tokens or an explicit begin-group or end-group character token
({ or } when normal TEX category codes apply) even though these are not valid N-type arguments.

23.5 Token conditionals

\token_if_group_begin_p:N * \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF * \token_if_group_begin:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N x \token_if_group_end_p:N (token)
\token_if_group_end:NTF x \token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle_p:N * \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF % \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

193

\token_if_alignment_p:N *
\token_if_alignment:NTF *

\token_if_parameter_p:N *
\token_if_parameter:NTF x

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

\token_if_parameter_p:N (token)
\token_if_parameter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N % \token_if_math_superscript_p:N <token>
\token_if_math_superscript:NTF * \token_if_math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

\token_if_math_subscript_p:N % \token_if_math_subscript_p:N (token)
\token_if_math_subscript:NTF x \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

\token_if_space_p:N «*
\token_if_space:NTF *

\token_if_letter_p:N *
\token_if_letter:NTF x

\token_if_other_p:N
\token_if_other:NTF x*

\token_if_active_p:N =*
\token_if_active:NTF x

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N (token)
\token_if_space:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

\token_if_letter_p:N (token)
\token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.

\token_if_other_p:N (token)
\token_if_other:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an “other” token.

\token_if_active_p:N (token)
\token_if_active:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_
\token_if_eq_catcode:

p:NN x \token_if_eq_catcode_p:NN (tokeni) (tokens)
NNTF x \token_if_eq_catcode:NNTF (tokeni) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN * \token_if_eq_charcode_p:NN (token:) (tokens)
\token_if_eq_charcode:NNTF * \token_if_eq_charcode:NNTF (token:) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

194

\token_if_eq_meaning p:NN * \token_if_eq_meaning_ p:NN (token;) (token)
\token_if_eq_meaning:NNTF % \token_if_eq_meaning:NNTF (tokeni) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

\token_if_macro_p:N x \token_if_macro_p:N (token)
\token_if_macro:NTF x \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Tests if the (token) is a TEX macro.

\token_if_cs_p:N x \token_if_cs_p:N (token)
\token_if_cs:NTF x \token_if_cs:NTF (token) {(true code)} {(false code)}

Tests if the (token) is a control sequence.

\token_if_expandable_p:N = \token_if_expandable_p:N (token)
\token_if_expandable:NTF x \token_if_expandable:NTF (token) {{true code)} {(false code)}

Tests if the (token) is expandable. This test returns (false) for an undefined token.

\token_if_long_macro_p:N = \token_if_long_macro_p:N (token)
\token_if_long_macro:NTF x \token_if_long_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Tests if the (token) is a long macro.

\token_if_protected_macro_p:N x \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF % \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is a protected macro: for a macro which is both protected and long
this returns false.

\token_if_protected_long_macro_p:N x \token_if_protected_long_macro_p:N <token>
\token_if_protected_long_macro:NTF * \token_if_protected_long_macro:NTF (token) {(true code)} {(false
code)}

Updated: 2012-01-20

Tests if the (token) is a protected long macro.

\token_if_chardef_p:N * \token_if_chardef_p:N (token)
\token_if_chardef:NTF x \token_if_chardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Tests if the (token) is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as
\chardefs.

\token_if_mathchardef_p:N % \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF % \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a mathchardef.

195

\token_if_font_selection_p:N x \token_if_font_selection_p:N (token)
\token_if_font_selection:NTF x \token_if_font_selection:NTF (token) {(true code)} {(false code)}

New: 2020-10-27

Tests if the (token) is defined to be a font selection command.

\token_if_dim_register_p:N * \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF * \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a dimension register.

\token_if_int_register_p:N * \token_if_int_register_p:N (token)
\token_if_int_register:NTF * \token_if_int_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, \chardefs,
or \mathchardefs depending on their value.

\token_if_muskip_register_p:N x \token_if_muskip_register_p:N (token)
\token_if_muskip_register:NTF % \token_if_muskip_register:NTF (token) {(true code)} {(false code)}

New: 2012-02-15

Tests if the (token) is defined to be a muskip register.

\token_if_skip_register_p:N x \token_if_skip_register_p:N (token)
\token_if_skip_register:NTF x \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a skip register.

\token_if_toks_register_p:N x \token_if_toks_register_p:N (token)
\token_if_toks_register:NTF x \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a toks register (not used by KTEX3).

\token_if_primitive_p:N x \token_if_primitive_p:N (token)
\token_if_primitive:NTF x \token_if_primitive:NTF (token) {(true code)} {(false code)}

Updated: 2020-09-11 Tests if the (token) is an engine primitive. In LuaTEX this includes primitive-like com-
mands defined using {token.set_lua}.

196

\token_case_catcode:Nn
\token_case_catcode:NnTF
\token_case_charcode:
\token_case_charcode:
\token_case_meaning:Nn
\token_case_meaning:NnTF

* \token_case_meaning:NnTF (test token)
* A
No * (token case;) {(code casei)}
NoTIF * (token cases) {(code cases)}
* ...
* (token casey) {{code case,)}
}

New: 2020-12-03

{(true code)?}

\peek_after:Nw

\peek_gafter:Nw

\1_peek_token

\g_peek_token

{(false code)}

This function compares the (test token) in turn with each of the (token cases). If
the two are equal (as described for \token_if_eq_catcode:NNTF, \token_if_eq_-
charcode:NNTF and \token_if_eq_meaning:NNTF, respectively) then the associated
(code) is left in the input stream and other cases are discarded. If any of the cases
are matched, the (true code) is also inserted into the input stream (after the code for the
appropriate case), while if none match then the (false code) is inserted. The functions
\token_case_catcode:Nn, \token_case_charcode:Nn, and \token_case_meaning:Nn,
which do nothing if there is no match, are also available.

23.6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version. In addition, using \peek_analysis_map_inline:n, one can map through the
following tokens in the input stream and repeatedly perform some tests.

\peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not as
a token list), and then expands the {function). The (token) remains in the input stream
as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (token) (as an implicit token,
not as a token list), and then expands the (function). The (token) remains in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

Token set by \peek_after:Nw and available for testing as described above.

Token set by \peek_gafter:Nw and available for testing as described above.

197

\peek_catcode:NTF

Updated: 2012-12-20

\peek_catcode_remove:NTF

Updated: 2012-12-20

\peek_charcode:NTF

Updated: 2012-12-20

\peek_charcode_remove:NTF

Updated: 2012-12-20

\peek_meaning:NTF

Updated: 2011-07-02

\peek_meaning_remove:NTF

Updated: 2011-07-02

\peek_remove_spaces:n

New: 2018-10-01

\peek_catcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (foken) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token) (as
defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test and
the (token) is left in the input stream after the (true code) or (false code) (as appropriate
to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) is removed from the input stream if the test is true. The function then
places either the (true code) or (false code) in the input stream (as appropriate to the
result of the test).

\peek_remove_spaces:n {(code)}

Peeks ahead and detect if the following token is a space (category code 10 and character
code 32). If so, removes the token and checks the next token. Once a non-space token
is found, the (code) will be inserted into the input stream. Typically this will contain a
peek operation, but this is not required.

198

\peek_remove_filler:n

New: 2022-01-10

\peek_N_type: TF

Updated: 2012-12-20

\peek_remove_filler:n {(code)}

Peeks ahead and detect if the following token is a space (category code 10) or has meaning
equal to \scan_stop:. If so, removes the token and checks the next token. If neither
of these cases apply, expands the next token using f-type expansion, then checks the
resulting leading token in the same way. If after expansion the next token is neither of
the two test cases, the (code) will be inserted into the input stream. Typically this will
contain a peek operation, but this is not required.

TEXhackers note: This is essentially a macro-based implementation of how TEX handles
the search for a left brace after for example \everypar, except that any non-expandable token
cleanly ends the (filler) (i.e. it does not lead to a TEX error).

In contrast to TEX’s filler removal, a construct \exp_not:N \foo will be treated in the same
way as \foo.

\peek_N_type:TF {(true code)} {(false code)}

Tests if the next (token) in the input stream can be safely grabbed as an N-type argument.
The test is (false) if the next (token) is either an explicit or implicit begin-group or end-
group token (with any character code), or an explicit or implicit space character (with
character code 32 and category code 10), or an outer token (never used in ITEX3) and
(true) in all other cases. Note that a (true) result ensures that the next (token) is a valid
N-type argument. However, if the next (token) is for instance \c_space_token, the test
takes the (false) branch, even though the next (token) is in fact a valid N-type argument.
The (token) is left in the input stream after the (true code) or (false code) (as appropriate
to the result of the test).

199

\peek_analysis_map_inline:n \peek_analysis_map_inline:n {(inline function)}

New: 2020-12-03
Updated: 2022-10-03

\peek_analysis_map_break:
\peek_analysis_map_break:n

New: 2020-12-03

\peek_regex:nTF
\peek_regex:NTF

New: 2020-12-03

Repeatedly removes one (token) from the input stream and applies the (inline function)
to it, until \peek_analysis_map_break: is called. The (inline function) receives three
arguments for each (token) in the input stream:

o (tokens), which both o-expand and x-expand to the (token). The detailed form of
(tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if it
is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the (token)
(0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: alignment tab,
6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other, D: active).
This can be converted to an integer by writing "(catcode).

These arguments are the same as for \tl_analysis_map_inline:nn defined in I3tl-
analysis. The (char code) and (catcode) do not take the meaning of a control se-
quence or active character into account: for instance, upon encountering the token
\c_group_begin_token in the input stream, \peek_analysis_map_inline:n calls the
(inline function) with #1 being \exp_not:n { \c_group_begin_token } (with the cur-
rent implementation), #2 being —1, and #3 being 0, as for any other control sequence.
In contrast, upon encountering an explicit begin-group token {, the (inline function) is
called with arguments \exp_after:wN { \if_false: } \fi:, 123 and 1.

The mapping is done at the current group level, i.e. any local assignments made by
the (inline function) remain in effect after the loop. Within the code, \1_peek_token is
set equal (as a token, not a token list) to the token under consideration.

\peek_analysis_map_inline:n

{ ... \peek_analysis_map_break:n {(code)} }

Stops the \peek_analysis_map_inline:n loop from seeking more tokens, and inserts
(code) in the input stream (empty for \peek_analysis_map_break:).

\peek_regex:nTF {(regex)} {(true code)} {(false code)}

Tests if the (tokens) that follow in the input stream match the (regular expression). Any
(tokens) that have been read are left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test). See |3regex for documentation of the syntax
of regular expressions. The (regular expression) is implicitly anchored at the start, so for
instance \peek_regex:nTF { a } is essentially equivalent to \peek_charcode:NTF a.

TgXhackers note: Implicit character tokens are correctly considered by \peek_regex:nTF
as control sequences, while functions that inspect individual tokens (for instance \peek_-
charcode:NTF) only take into account their meaning.

The \peek_regex:nTF function only inspects as few tokens as necessary to determine
whether the regular expression matches. For instance \peek_regex:nTF { abc | [a-z] }
{ } { } abc will only inspect the first token a even though the first branch abc of the alterna-
tive is preferred in functions such as \peek_regex_remove_once:n. This may have an effect on
tokenization if the input stream has not yet been tokenized and category codes are changed.

200

\peek_regex_remove_once:nTF \peek_regex_remove_once:nTF {(regex)} {(true code)} {(false code)}
\peek_regex_remove_once:NTF

New: 2020-12-03

Tests if the (tokens) that follow in the input stream match the (regex). If the test is true,
the (tokens) are removed from the input stream and the (true code) is inserted, while if
the test is false, the (false code) is inserted followed by the (tokens) that were originally in
the input stream. See 13regex for documentation of the syntax of regular expressions. The
(regular expression) is implicitly anchored at the start, so for instance \peek_regex_-
remove_once:nTF { a } is essentially equivalent to \peek_charcode_remove:NTF a.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
remove_once:nTF as control sequences, while functions that inspect individual tokens (for in-
stance \peek_charcode:NTF) only take into account their meaning.

\peek_regex_replace_once:nn \peek_regex_replace_once:nnTF {(regex)} {(replacement)} {(true code)}
\peek_regex_replace_once:nnTF {(false code)}

\peek_regex_replace_once:Nn

\peek_regex_replace_once:NnTF

New: 2020-12-03

If the (tokens) that follow in the input stream match the (regez), replaces them according
to the (replacement) as for \regex_replace_once:nnN, and leaves the result in the input
stream, after the (true code). Otherwise, leaves (false code) followed by the (tokens) that
were originally in the input stream, with no modifications. See I3regex for documentation
of the syntax of regular expressions and of the (replacement): for instance \0 in the
(replacement) is replaced by the tokens that were matched in the input stream. The
(regular expression) is implicitly anchored at the start. In contrast to \regex_replace_-
once:nnN, no error arises if the (replacement) leads to an unbalanced token list: the
tokens are inserted into the input stream without issue.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
replace_once:nnTF as control sequences, while functions that inspect individual tokens (for
instance \peek_charcode:NTF) only take into account their meaning.

23.7 Description of all possible tokens

Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.
Two tokens of the same shape must have the same meaning, but the converse does not
hold.

A token has one of the following shapes.

o A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

201

An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and XHTEX and less for other engines) and category code 13.

A character token, characterized by its character code and category code (one of 1,
2,3,4,6, 7,8, 10, 11 or 12 whose meaning is described below).

There are also a few internal tokens. The following list may be incomplete in some
engines.

Expanding \the\font results in a token that looks identical to the command that
was used to select the current font (such as \tenrm) but it differs from it in shape.

A “frozen” \relax, which differs from the primitive in shape (but has the same
meaning), is inserted when the closing \fi of a conditional is encountered before
the conditional is evaluated.

Expanding \noexpand (token) (when the (token) is expandable) results in an in-
ternal token, displayed (temporarily) as \notexpanded: (token), whose shape co-
incides with the (token) and whose meaning differs from \relax.

An \outer endtemplate: can be encountered when peeking ahead at the next
token; this expands to another internal token, end of alignment template.

Tricky programming might access a frozen \endwrite.

Some frozen tokens can only be accessed in interactive sessions: \cr, \right,
\endgroup, \fi, \inaccessible.

In LuaTlgX, there is also the strange case of “bytes” 1100zy where z,y
are any two lowercase hexadecimal digits, so that the hexadecimal number ranges
from \text{110000}=1114112$ to~$1100ff = 1114367. These are used to output
individual bytes to files, rather than UTF-8. For the purposes of token comparisons
they behave like non-expandable primitive control sequences (not characters) whose
\meaning is the ,character, followed by the given byte. If this byte is in the range
80—ff this gives an “invalid utf-8 sequence” error: applying \token_to_str:N or
\token_to_meaning:N to these tokens is unsafe. Unfortunately, they don’t seem
to be detectable safely by any means except perhaps Lua code.

The meaning of a (non-active) character token is fixed by its category code (and

character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample
output of the TEX primitive \meaning, together with their ETEX3 names and most
common example:

1
2

N O e W

begin-group character (group_begin, often {),
end-group character (group_end, often }),

math shift character (math_toggle, often $),
alignment tab character (alignment, often &),
macro parameter character (parameter, often #),

superscript character (math_superscript, often 7),

202

8 subscript character (math_subscript, often _),
10 blank space (space, often character code 32),
11 the letter (letter, such as A),

12 the character (other, such as 0).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

o a macro, used in BTEX3 for most functions and some variables (t1, fp, seq, ...),
 a primitive such as \def or \topmark, used in ETEX3 for some functions,

e a register such as \count123, used in TEX3 for the implementation of some vari-
ables (int, dim, ...),

e a constant integer such as \char"56 or \mathchar"121,
o a font selection command,
e undefined.

Macros can be \protected or not, \long or not (the opposite of what KTEX3 calls
nopar), and \outer or not (unused in I#TEX3). Their \meaning takes the form

(prefiz) macro: (argument)->(replacement)

where (prefiz) is among \protected\long\outer, (argument) describes parameters that
the macro expects, such as #1#2#3, and (replacement) describes how the parameters are
manipulated, such as \int_eval :n{#2+#1*#3}.

Now is perhaps a good time to mention some subtleties relating to tokens with
category code 10 (space). Any input character with this category code (normally, space
and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”, as they are suitable to be used
as an argument for a function with the signature :N.

When a macro takes a delimited argument TEX scans ahead until finding the delim-
iter (outside any pairs of begin-group/end-group explicit characters), and the resulting
list of tokens (with outer braces removed) becomes the argument. Note that explicit
space characters at the start of the argument are not ignored in this case (and they
prevent brace-stripping).

203

\char_lowercase:N
\char_uppercase:N
\char_titlecase:N
\char_foldcase:N
\char_str_lowercase:N
\char_str_uppercase:N
\char_str_titlecase:N

*
*
*
*
*
*
*
\char_str_foldcase:N *

New: 2020-01-09

23.8 Deprecated functions

\char_lowercase:N (char)

Converts the (char) to the equivalent case-changed character as detailed by the func-
tion name (see \str_foldcase:n and \text_titlecase:n for details of these terms).
The case mapping is carried out with no context-dependence (c¢f. \text_uppercase:n,
etc.) The str versions always generate “other” (category code 12) characters, whilst the
standard versions generate characters with the category code of the (char) (i.e. only the
character code changes).

204

\prop_new:N
\prop_new:c

\prop_clear:N

\prop_clear:c
\prop_gclear:N

\prop_gclear:c

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

Chapter 24

The 13prop package
Property lists

expl3 implements a (property list) data type, which contain an unordered list of entries
each of which consists of a (key) and an associated (value). The (key) and (value) may
both be any (balanced text), the (key) is processed using \tl_to_str:n, meaning that
category codes are ignored. It is possible to map functions to property lists such that the
function is applied to every key—value pair within the list.

Each entry in a property list must have a unique (key): if an entry is added to a
property list which already contains the (key) then the new entry overwrites the existing
one. The (keys) are compared on a string basis, using the same method as \str_if_-
eq:nn.

Property lists are intended for storing key-based information for use within code.
This is in contrast to key—value lists, which are a form of input parsed by the I3keys
module.

24.1 Creating and initialising property lists

\prop_new:N (property list)

Creates a new (property list) or raises an error if the name is already taken. The decla-
ration is global. The (property list) initially contains no entries.

\prop_clear:N (property list)

Clears all entries from the (property list).

\prop_clear_new:N (property list)

Ensures that the (property list) exists globally by applying \prop_new:N if necessary,
then applies \prop_(g)clear:N to leave the list empty.

205

\prop_set_eq:NN
\prop_set_eq: (cN|Nc|cc)
\prop_gset_eq:NN
\prop_gset_eq: (cN|Nc|cc)

\prop_set_from_keyval:Nn
\prop_set_from_keyval:cn
\prop_gset_from_keyval:Nn
\prop_gset_from_keyval:cn

New: 2017-11-28
Updated: 2021-11-07

\prop_const_from_keyval:Nn
\prop_const_from_keyval:cn

New: 2017-11-28
Updated: 2021-11-07

\prop_set_eq:NN (property listi) (property lists)
Sets the content of (property list;) equal to that of (property lists).

\prop_set_from_keyval:Nn (property list)

{

(key1) = (valuel) ,
(key2) = (value2) , ...
}

Sets (property list) to contain key—value pairs given in the second argument. If duplicate
keys appear only the last of the values is kept.

Spaces are trimmed around every (key) and every (value), and if the result of trim-
ming spaces consists of a single brace group then a set of outer braces is removed. This
enables both the (key) and the (value) to contain spaces, commas or equal signs. The
(key) is then processed by \tl_to_str:n. This function correctly detects the = and ,
signs provided they have the standard category code 12 or they are active.

Notice that in contrast to most keyval lists (e.g. those in I13keys), each key here must
be followed with an = sign.

\prop_const_from_keyval:Nn (property list)

{

(key1) = (valuel) ,
(key2) = (value2) , ...
}

Creates a new constant (property list) or raises an error if the name is already taken. The
(property list) is set globally to contain key—value pairs given in the second argument,
processed in the way described for \prop_set_from_keyval:Nn. If duplicate keys appear
only the last of the values is kept. This function correctly detects the = and , signs
provided they have the standard category code 12 or they are active.

Notice that in contrast to most keyval lists (e.g. those in I3keys), each key here must
be followed with an = sign.

24.2 Adding and updating property list entries

\prop_put :Nnn

\prop_-

\prop_put : (NnV|Nno|Nne|Nnx|NVn|NVV|NVx|Nvx|Non|Noo|Nxx|cnn|cnV|cno|cne|cnx|cVn|cVV|cVx|cvx|con|coo|cxx) put:Nnn

\prop_gput :Nnn

(property

\prop_gput : (NnV|Nno|Nne|Nnx|NVn|NVV|NVx|Nvx|Non|Noo|Nxx|cnn|cnV|cno|cne|cnx|cVn|cVV|cVx|cvx|con|coo|cxx) list)

{(key)?}

Updated: 2012-07-09

{(value)}

Adds an entry to the (property list) which may be accessed using the (key) and which
has (value). If the (key) is already present in the (property list), the existing entry is
overwritten by the new (value). Both the (key) and (value) may contain any (balanced
text). The (key) is stored after processing with \tl_to_str:n, meaning that category
codes are ignored.

206

\prop_put_if_new:Nnn
\prop_put_if_new:cnn
\prop_gput_if_new:Nnn
\prop_gput_if_new:cnn

\prop_concat : NNN
\prop_concat:ccc
\prop_gconcat : NNN
\prop_gconcat:ccc

New: 2021-05-16

\prop_put_from_keyval:Nn
\prop_put_from_keyval:cn
\prop_gput_from_keyval:Nn
\prop_gput_from_keyval:cn

New: 2021-05-16
Updated: 2021-11-07

\prop_put_if_new:Nnn (property list) {(key)} {(value)}

If the (key) is present in the (property list) then no action is taken. Otherwise, a new
entry is added as described for \prop_put:Nnn.

\prop_concat:NNN (property listi) (property lists) (property 1list3)

Combines the key—value pairs of (property lists) and (property lists), and saves the result
in (pproperty list;). If a key appears in both (property lists) and (property lists) then the
last value, namely the value in (property lists) is kept.

\prop_put_from_keyval:Nn (property list)

{

(key1) = (valuel) ,

(key2) = (value2) , ...

}

Updates the (property list) by adding entries for each key—value pair given in the second
argument. The addition is done through \prop_put:Nnn, hence if the (property list)
already contains some of the keys, the corresponding values are discarded and replaced
by those given in the key—value list. If duplicate keys appear in the key—value list then
only the last of the values is kept.

The function is equivalent to storing the key—value pairs in a temporary property
list using \prop_set_from_keyval:Nn, then combining (property list) with the tempo-
rary variable using \prop_concat :NNN. In particular, the (keys) and (values) are space-
trimmed and unbraced as described in \prop_set_from_keyval:Nn. This function cor-
rectly detects the = and , signs provided they have the standard category code 12 or they
are active.

24.3 Recovering values from property lists

\prop_get :NnN

\prop_get:NnN (property list) {(key)} (tl var)

\prop_get : (NVN|NvN|NoN|cnN|cVN|cvN|coN)

Updated: 2011-08-28

\prop_pop:NnN
\prop_pop: (NoN|cnN|coN)

Updated: 2011-08-18

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) is set to the special marker \q_no_value. The (token list variable) is set within
the current TEX group. See also \prop_get :NnNTF.

\prop_pop:NnN (property list) {(key)} (tl var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token
list variable) is set to the special marker \q_no_value. The (key) and (value) are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

207

\prop_gpop: NnN
\prop_gpop: (NoN|cnN|coN)

Updated: 2011-08-18

\prop_item:Nn *
\prop_item:cn *

New: 2014-07-17

\prop_count:N x
\prop_count:c *

\prop_to_keyval:N x

\prop_remove:Nn
\prop_remove: (NV|cn|cV)
\prop_gremove:Nn
\prop_gremove: (NV|cn|cV)

New: 2012-05-12

\prop_if_exist_p:N
\prop_if_exist_p:c
\prop_if_exist:NTF

*
*
*
\prop_if_exist:cIF %

New: 2012-03-03

\prop_gpop:NnN (property list) {(key)} (tl1 var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) is set to the special marker \q_no_value. The (key) and (value) are then deleted
from the property list. The (property list) is modified globally, while the assignment of
the (token list variable) is local. See also \prop_gpop: NnNTF.

\prop_item:Nn (property list) {(key)}
Expands to the (value) corresponding to the (key) in the (property list). If the (key) is

missing, this has an empty expansion.

TEXhackers note: This function is slower than the non-expandable analogue \prop_-
get:NoN. The result is returned within the \unexpanded primitive (\exp_not:n), which means
that the (value) does not expand further when appearing in an x-type or e-type argument
expansion.

\prop_count:N (property list)

Leaves the number of key—value pairs in the (property list) in the input stream as an
(integer denotation).

\prop_to_keyval:N (property list)

Expands to the (property list) in a key—value notation. Keep in mind that a (property
list) is unordered, while key—value interfaces don’t necessarily are, so this can’t be used
for arbitrary interfaces.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the key—value list does not expand further when appearing in an x-type or
e-type argument expansion. It also needs exactly two steps of expansion.

24.4 Modifying property lists

\prop_remove:Nn (property list) {(key)}

Removes the entry listed under (key) from the (property list). If the (key) is not found
in the (property list) no change occurs, i.e there is no need to test for the existence of a
key before deleting it.

24.5 Property list conditionals

\prop_if_exist_p:N (property list)
\prop_if_exist:NTF (property list) {(true code)} {(false code)}

Tests whether the (property list) is currently defined. This does not check that the
(property list) really is a property list variable.

208

\prop_if_empty_p:N =%
\prop_if_empty_p:c *
\prop_if_empty:NTF %
\prop_if_empty:cTF *

\prop_if_empty_p:N (property list)
\prop_if_empty:NTF (property list) {(true code)} {(false code)}

Tests if the (property list) is empty (containing no entries).

\prop_if_in_p:Nn * \prop_if_in_p:Nn (property list) {(key)}
\prop_if_in_p:(NV|No|cn|cV|co) x \prop_if_in:NnTF (property list) {(key)} {(true code)} {(false code)}
\prop_if_in:NnTF *

\prop_if_in:(NV|No|cn|cV|co)TF *

Updated: 2011-09-15

Tests if the (key) is present in the (property list), making the comparison using the
method described by \str_if_eq:nnTF.

TgXhackers note: This function iterates through every key—value pair in the (property
list) and is therefore slower than using the non-expandable \prop_get : NnNTF.

24.6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
cases follow dependent on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get :NnNTF \prop_get :NnNTF (property list) {(key)} (token list variable)
\prop_get : (NVN|NvN|NoN|cnN|cVN|cvN|coN)TF {(true code)} {(false code)}

Updated: 2012-05-19

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), stores the corresponding (value) in the
(token list variable) without removing it from the (property list), then leaves the (true
code) in the input stream. The (token list variable) is assigned locally.

\prop_pop:NnNTF \prop_pop:NnNTF (property list) {(key)} (token list variable) {(true code)}
\prop_pop:cnNTF {(false code)}

New: 2011-08-18 If the (key) is not present in the (property list), leaves the (false code) in the input stream.
Updated: 2012-05-19 The value of the (token list variable) is not defined in this case and should not be relied
T upon. If the {key) is present in the (property list), pops the corresponding (value) in the

(token list variable), i.e. removes the item from the (property list). Both the (property
list) and the (token list variable) are assigned locally.

209

\prop_gpop:NnNTF \prop_gpop:NnNTF (property list) {(key)} (token list variable) {(true code)}
\prop_gpop:cnNTF {(false code)}

New: 2011-08-18
Updated: 2012-05-19

\prop_map_function:NN 5%
\prop_map_function:cN 5%

Updated: 2013-01-08

\prop_map_inline:Nn
\prop_map_inline:cn

Updated: 2013-01-08

\prop_map_tokens:Nn ¥
\prop_map_tokens:cn w

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). The (property list) is
modified globally, while the (token list variable) is assigned locally.

24.7 Mapping over property lists

All mappings are done at the current group level, i.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\prop_map_function:NN (property list) (function)

Applies (function) to every (entry) stored in the (property list). The {function) receives
two arguments for each iteration: the (key) and associated (value). The order in which
(entries) are returned is not defined and should not be relied upon. To pass further
arguments to the (function), see \prop_map_tokens:Nn.

\prop_map_inline:Nn (property list) {(inline function)}

Applies (inline function) to every (entry) stored within the (property list). The (inline
function) should consist of code which receives the (key) as #1 and the (value) as #2.
The order in which (entries) are returned is not defined and should not be relied upon.

\prop_map_tokens:Nn (property list) {(code)}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each key—value pair in the (property list) as two trailing brace
groups. For instance,

\prop_map_tokens:Nn \1_my_prop { \str_if_eq:nnT { mykey } }

expands to the value corresponding to mykey: for each pair in \1_my_prop the function
\str_if_eq:nnT receives mykey, the (key) and the (value) as its three arguments. For
that specific task, \prop_item:Nn is faster.

210

\prop_map_break: 5

Updated: 2012-06-29

\prop_map_break:n

Updated: 2012-06-29

\prop_show:N
\prop_show:c

Updated: 2021-04-29

\prop_map_break:

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed. This normally takes place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\prop_map_break:n {({code)}

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

24.8 Viewing property lists

\prop_show:N (property list)
Displays the entries in the (property list) in the terminal.

211

\prop_log:N
\prop_log:c

New: 2014-08-12
Updated: 2021-04-29

\1_tmpa_prop
\1_tmpb_prop

New: 2012-06-23

\g_tmpa_prop

\g_tmpb_prop

New: 2012-06-23

\c_empty_prop

\prop_log:N (property list)
Writes the entries in the (property list) in the log file.

24.9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch property lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

24.10 Constants

A permanently-empty property list used for internal comparisons.

212

\dim_new:N
\dim_new:c

\dim_const:Nn

\dim_const:cn

New: 2012-03-05

\dim_zero:N

\dim_zero:c
\dim_gzero:N

\dim_gzero:c

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

New: 2012-01-07

Chapter 25

The 13skip package
Dimensions and skips

TEX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

Many functions take dimension expressions (“(dim expr)”) or skip expressions (“(skip
expr)”) as arguments.

25.1 Creating and initialising dim variables

\dim_new:N (dimension)

Creates a new (dimension) or raises an error if the name is already taken. The declaration
is global. The (dimension) is initially equal to 0 pt.

\dim_const:Nn (dimension) {(dim expr)}

Creates a new constant (dimension) or raises an error if the name is already taken. The
value of the (dimension) is set globally to the (dim expr).

\dim_zero:N (dimension)

Sets (dimension) to 0pt.

\dim_zero_new:N (dimension)

Ensures that the (dimension) exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the (dimension) set to zero.

213

\dim_if_exist_p:N *
\dim_if_exist_p:c *
\dim_if_exist:NTF *
\dim_if_exist:cTF %

New: 2012-03-03

\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn
\dim_set:cn
\dim_gset:Nn
\dim_gset:cn

Updated: 2011-10-22

\dim_set_eq:NN
\dim_set_eq:(cN|Nc|cc)
\dim_gset_eq:NN
\dim_gset_eq:(cN|Nc|cc)

\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Updated: 2011-10-22

\dim_abs:n *

Updated: 2012-09-26

\dim_max:nn *
\dim_min:nn *

New: 2012-09-09
Updated: 2012-09-26

\dim_if_exist_p:N (dimension)
\dim_if_exist:NTF (dimension) {(true code)} {(false code)}

Tests whether the (dimension) is currently defined. This does not check that the
(dimension) really is a dimension variable.

25.2 Setting dim variables

\dim_add:Nn (dimension) {(dim expr)}
Adds the result of the (dim expr) to the current content of the (dimension).

\dim_set:Nn (dimension) {(dim expr)}

Sets (dimension) to the value of (dim expr), which must evaluate to a length with units.

\dim_set_eq:NN (dimension:) (dimensions)

Sets the content of (dimension;) equal to that of (dimensionsy).

\dim_sub:Nn (dimension) {(dim expr)}

Subtracts the result of the (dim expr) from the current content of the (dimension).

25.3 Utilities for dimension calculations

\dim_abs:n {(dim expr)}

Converts the (dim exzpr) to its absolute value, leaving the result in the input stream as a
(dimension denotation).

\dim_max:nn {(dim expri)} {(dim exprs)}
\dim_min:nn {(dim expr;)} {(dim expr:)}

Evaluates the two (dim exprs) and leaves either the maximum or minimum value in the
input stream as appropriate, as a (dimension denotation).

214

\dim_ratio:nn % \dim_ratio:nn {(dim expr:)} {(dim exprs)}

Updated: 2011-10-22 Parses the two (dim exprs) and converts the ratio of the two to a form suitable for use
inside a (dim expr). This ratio is then left in the input stream, allowing syntax such as

\dim_set:Nn \1_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ratio expression between two integers,
with all distances converted to scaled points. Thus

\tl_set:Nx \1_my_tl { \dim_ratio:nn { 56 pt } { 10 pt } }
\tl_show:N \1_my_tl

displays 327680/655360 on the terminal.

25.4 Dimension expression conditionals

\dim_compare_p:nNn x \dim_compare_p:nNn {(dim expri)} (relation) {(dim expra)}
\dim_compare:nNnTF x \dim_compare:nNnTF

{(dim expri)} (relation) {(dim exprs)}

{(true code)} {(false code)}

This function first evaluates each of the (dim exprs) as described for \dim_eval:n. The
two results are then compared using the (relation):

Equal
Greater than

>
Less than <

This function is less flexible than \dim_compare :nTF but around 5 times faster.

215

\dim_compare_p:n * \dim_compare_p:n
\dim_compare:nTF x {

Updated: 2013-01-13 (dim expry) (relation)

(dim exprn) (relationn)
(dim exprn41)
}
\dim_compare :nTF
{

dim expri relation;
P.

(dim exprn) (relationy)
(dim exprn+1)

}

{(true code)} {(false code)}

This function evaluates the (dim exzprs) as described for \dim_eval:n and compares
consecutive result using the corresponding (relation), namely it compares (dim expr;) and
(dim exprs) using the (relation;), then (dim expre) and (dim exprs) using the (relations),
until finally comparing (dim expry) and (dim expryy1) using the (relationy). The test
yields true if all comparisons are true. Each (dim ezpr) is evaluated only once, and the
evaluation is lazy, in the sense that if one comparison is false, then no other (dim expr)
is evaluated and no other comparison is performed. The (relations) can be any of the

following:
Equal =or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal 1=

This function is more flexible than \dim_compare :nNnTF but around 5 times slower.

216

\dim_case:nn *
\dim_case:nnTF x

New: 2013-07-24

\dim_do_until:nNnn 3

\dim_do_while:nNnn 3

\dim_until_do:nNnn %

\dim_case:nnTF {(test dim expr)}
{
{(dim expr case;)} {{code casei)}
{(dim expr case:)} {(code cases)}

%(.c;im expr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test dim expr) and compares this in turn to each of the (dim
expr cases). If the two are equal then the associated (code) is left in the input stream and
other cases are discarded. If any of the cases are matched, the (true code) is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the (false code) is inserted. The function \dim_case:nn, which does nothing if there is
no match, is also available. For example

\dim_set:Nn \1_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \1_tmpa_dim }

{
{5pt} { Small }
{4 pt+6pt} {Medium }
{ - 10 pt } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

25.5 Dimension expression loops

\dim_do_until:nNnn {(dim expri)} (relation) {(dim exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (dim exprs) as described for \dim_compare :nNnTF. If the test
is false then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is true.

\dim_do_while:nNnn {(dim expri)} (relation) {(dim exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (dim exprs) as described for \dim_compare:nNnTF. If the test
is true then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is false.

\dim_until_do:nNnn {(dim expr:)} (relation) {(dim expr2)} {(code)}

Evaluates the relationship between the two (dim exprs) as described for \dim_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is true.

217

\dim_while_do:nNnn 3

\dim_do_until:nn

Updated: 2013-01-13

\dim_do_while:nn

Updated: 2013-01-13

\dim_until_do:nn

Updated: 2013-01-13

\dim_while_do:nn 3

Updated: 2013-01-13

\dim_step_function:nnnN 5¢

New: 2018-02-18

\dim_step_inline:nnnn

New: 2018-02-18

\dim_while_do:nNnn {(dim expri)} (relation) {(dim exprz)} {(code)}

Evaluates the relationship between the two (dim exprs) as described for \dim_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is false.

\dim_do_until:nn {({dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is false then the
(code) is inserted into the input stream again and a loop occurs until the (relation) is
true.

\dim_do_while:nn {({dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is true then the
(code) is inserted into the input stream again and a loop occurs until the (relation) is
false.

\dim_until_do:nn {({dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is false. After the (code) has been
processed by TEX the test is repeated, and a loop occurs until the test is true.

\dim_while_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

25.6 Dimension step functions

\dim_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be dimension expressions. The (function) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one argument.

\dim_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be dimension expressions. Then for each (value) from the (initial value) to the
(final value) in turn (using (step) between each (value)), the (code) is inserted into the
input stream with #1 replaced by the current (value). Thus the (code) should define a
function of one argument (#1).

218

\dim_step_variable:nnnNn

New: 2018-02-18

\dim_eval:n *

Updated: 2011-10-22

\dim_sign:n %

New: 2018-11-03

\dim_use:N *
\dim_use:c *

\dim_to_decimal:n *

New: 2014-07-15

\dim_step_variable:nnnNn

{(initial value)} {(step)} {(final value)} (t1 var) {(code)}
This function first evaluates the (initial value), (step) and (final value), all of which
should be dimension expressions. Then for each (value) from the (initial value) to the
(final value) in turn (using (step) between each (value)), the (code) is inserted into the
input stream, with the (¢l var) defined as the current (value). Thus the (code) should
make use of the (¢ var).

25.7 Using dim expressions and variables

\dim_eval:n {(dim expr)}

Evaluates the (dim expr), expanding any dimensions and token list variables within the
(expression) to their content (without requiring \dim_use:N/\t1l_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (dimension denotation) after two expansions. This is expressed in points (pt), and
requires suitable termination if used in a TEX-style assignment as it is not an (internal
dimension).

\dim_sign:n {(dim expr)}

Evaluates the (dim expr) then leaves 1 or 0 or —1 in the input stream according to the
sign of the result.

\dim_use:N (dimension)

Recovers the content of a (dimension) and places it directly in the input stream. An
error is raised if the variable does not exist or if it is invalid. Can be omitted in places
where a (dimension) is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

\dim_to_decimal:n {(dim expr)}

Evaluates the (dim expr), and leaves the result, expressed in points (pt) in the input

stream, with mo units. The result is rounded by TEX to at most five decimal places. If

the decimal part of the result is zero, it is omitted, together with the decimal marker.
For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted

to (TEX) points.

219

\dim_to_decimal_in_bp:n *

New: 2014-07-15
Updated: 2023-05-20

\dim_to_decimal_in_cc:
\dim_to_decimal_in_cm:
\dim_to_decimal_in_dd:
\dim_to_decimal_in_in:
\dim_to_decimal_in_mm:
\dim_to_decimal_in_pc:

BB BBBB
* ok o o X ot

New: 2023-05-20

\dim_to_decimal_in_bp:n {(dim expr)}

Evaluates the (dim expr), and leaves the result, expressed in big points (bp) in the input

stream, with nmo units. The result is rounded by TEX to at most five decimal places. If

the decimal part of the result is zero, it is omitted, together with the decimal marker.
For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, i.e. the magnitude of one (TEX) point when converted
to big points.

TEXhackers note: The implementation of this function is re-entrant: the result of
\dim_compare :nNnTF
{ <x>bp } =
{ \dim_to_decimal_in_bp:n { <x>bp } bp }
will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

\dim_to_decimal_in_cm:n {(dim expr)}

Evaluates the (dim expr), and leaves the result, expressed with the appropriate scaling
in the input stream, with no units. If the decimal part of the result is zero, it is omitted,
together with the decimal marker. The precisions of the result is limited to a maximum
of five decimal places with trailing zeros omitted.

The maximum TEX allowable dimension value (available as \maxdimen in plain TEX
and IWTEX and \c_max_dim in expl3) can only be expressed exactly in the units pt, bp
and sp. The maximum allowable input values to five decimal places are

1276.00215 cc
575.83174 cm
15312.02584 dd
226.70540 in
5758.31742 mm
1365.33333 pc

(Note that these are not all equal, but rather any larger value will overflow due to the
way TEX converts to sp.) Values given to five decimal places larger that these will result
in TEX errors; the behavior if additional decimal places are given depends on the TEX
internals and thus larger values are not supported by expl3.

TEXhackers note: The implementation of these functions is re-entrant: the result of

\dim_compare :nNnTF
{ <x><unit> } =
{ \dim_to_decimal _in_<unit>:n { <x><unit> } <unit> }

will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

220

\dim_to_decimal_in_sp:n *

New: 2015-05-18

\dim_to_decimal_in_sp:n {(dim expr)}

Evaluates the (dim expr), and leaves the result, expressed in scaled points (sp) in the
input stream, with no units. The result is necessarily an integer.

\dim_to_decimal_in_unit:nn * \dim_to_decimal_in_unit:nn {(dim expr:)} {(dim exprs)}

New: 2014-07-15
Updated: 2023-05-20

\dim_to_fp:n *

New: 2012-05-08

\dim_show:N
\dim_show:c

\dim_show:n

New: 2011-11-22

Updated: 2015-08-07

\dim_log:N
\dim_log:c

New: 2014-08-22

Updated: 2015-08-03

Evaluates the (dim exprs), and leaves the value of (dim expr;), expressed in a unit given
by (dim exprs), in the input stream. If the decimal part of the result is zero, it is omitted,
together with the decimal marker. The precisions of the result is limited to a maximum
of five decimal places with trailing zeros omitted.

For example

\dim_to_decimal_in_unit:nn { 1bp } { i1mm }

leaves 0.35278 in the input stream, i.e. the magnitude of one big point when expressed
in millimetres. The conversions do not guarantee that TEX would yield identical results
for the direct input in an equality test, thus for instance

\dim_compare:nNnTF
{ 1bp } =
{ \dim_to_decimal_in_unit:nn { 1bp } { 1mm } mm }

will take the false branch.

\dim_to_fp:n {(dim expr)}

Expands to an internal floating point number equal to the value of the (dim ezpr) in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision and a smaller range are acceptable.

25.8 Viewing dim variables

\dim_show:N (dimension)

Displays the value of the (dimension) on the terminal.

\dim_show:n {(dim expr)}

Displays the result of evaluating the (dim expr) on the terminal.

\dim_log:N (dimension)

Writes the value of the (dimension) in the log file.

221

\dim_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_dim

\c_zero_dim

\1_tmpa_dim
\1_tmpb_dim

\g_tmpa_dim
\g_tmpb_dim

\skip_new:N
\skip_new:c

\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\dim_log:n {(dim expr)}
Writes the result of evaluating the (dim expr) in the log file.

25.9 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

A zero length as a dimension. This can also be used as a component of a skip.

25.10 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

25.11 Creating and initialising skip variables

\skip_new:N (skip)

Creates a new (skip) or raises an error if the name is already taken. The declaration is
global. The (skip) is initially equal to 0pt.

\skip_const:Nn (skip) {(skip expr)}
Creates a new constant (skip) or raises an error if the name is already taken. The value

of the (skip) is set globally to the (skip expr).

\skip_zero:N (skip)
Sets (skip) to 0pt.

222

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N %
\skip_if_exist_p:c *
\skip_if_exist:NTF x
\skip_if_exist:cTF *

New: 2012-03-03

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Updated: 2011-10-22

\skip_set_eq:NN
\skip_set_eq: (cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn

\skip_sub:cn
\skip_gsub:Nn

\skip_gsub:cn

Updated: 2011-10-22

\skip_zero_new:N (skip)

Ensures that the (skip) exists globally by applying \skip_new:N if necessary, then applies
\skip_(g)zero:N to leave the (skip) set to zero.

\skip_if_exist_p:N (skip)
\skip_if_exist:NTF (skip) {(true code)} {(false code)}

Tests whether the (skip) is currently defined. This does not check that the (skip) really
is a skip variable.

25.12 Setting skip variables
\skip_add:Nn (skip) {(skip expr)}

Adds the result of the (skip expr) to the current content of the (skip).

\skip_set:Nn (skip) {(skip expr)}

Sets (skip) to the value of (skip expr), which must evaluate to a length with units and
may include a rubber component (for example 1 cm plus 0.5 cm.

\skip_set_eq:NN (skip:) (skipz)
Sets the content of (skip;) equal to that of (skips).

\skip_sub:Nn (skip) {(skip expr)}
Subtracts the result of the (skip expr) from the current content of the (skip).

223

\skip_if_eq_p:nn *
\skip_if_eq:nnTF *

\skip_if_finite_p:n *
\skip_if_finite:nTF *

New: 2012-03-05

\skip_eval:n *

Updated: 2011-10-22

\skip_use:N *
\skip_use:c *

\skip_show:N

\skip_show:c

Updated: 2015-08-03

\skip_show:n

New: 2011-11-22

Updated: 2015-08-07

25.13 Skip expression conditionals

\skip_if_eq_p:nn {(skip expri)} {(skip exprs)}
\skip_if_eq:nnTF

{(skip expr1)} {(skip exprs)}

{(true code)} {(false code)}

This function first evaluates each of the (skip exprs) as described for \skip_eval:n.
The two results are then compared for exact equality, 7.e. both the fixed and rubber
components must be the same for the test to be true.

\skip_if_finite_p:n {(skip expr)}
\skip_if_finite:nTF {(skip expr)} {(true code)} {(false code)}

Evaluates the (skip expr) as described for \skip_eval:n, and then tests if all of its
components are finite.

25.14 Using skip expressions and variables

\skip_eval:n {(skip expr)}

Evaluates the (skip expr), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. The result of the calculation is left in the input
stream as a (glue denotation) after two expansions. This is expressed in points (pt), and
requires suitable termination if used in a TEX-style assignment as it is not an (internal
glue).

\skip_use:N (skip)

Recovers the content of a (skip) and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(dimension) or (skip) is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

25.15 Viewing skip variables

\skip_show:N (skip)
Displays the value of the (skip) on the terminal.

\skip_show:n {(skip expr)}

Displays the result of evaluating the (skip expr) on the terminal.

224

\skip_log:N
\skip_log:c

New: 2014-08-22
Updated: 2015-08-03

\skip_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_skip

Updated: 2012-11-02

\c_zero_skip

Updated: 2012-11-01

\1_tmpa_skip
\1_tmpb_skip

\g_tmpa_skip
\g_tmpb_skip

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

Updated: 2011-10-22

\skip_log:N (skip)
Writes the value of the (skip) in the log file.

\skip_log:n {(skip expr)}
Writes the result of evaluating the (skip expr) in the log file.

25.16 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

A zero length as a skip, with no stretch nor shrink component.

25.17 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any IA#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any IATpX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

25.18 Inserting skips into the output

\skip_horizontal:N (skip)
\skip_horizontal:n {(skip expr)}

Inserts a horizontal (skip) into the current list. The argument can also be a (dim).

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

225

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

\skip_vertical:N (skip)
\skip_vertical:n {(skip expr)}

Inserts a vertical (skip) into the current list. The argument can also be a (dim).

Updated: 2011-10-22

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

25.19 Creating and initialising muskip variables

\muskip_new:N \muskip_new:N (muskip)

ki :
M Creates a new (muskip) or raises an error if the name is already taken. The declaration

is global. The (muskip) is initially equal to 0 mu.

\muskip_const:Nn \muskip_const:Nn (muskip) {(muskip expr)}

\muskip_const:cn
- Creates a new constant (muskip) or raises an error if the name is already taken. The

value of the (muskip) is set globally to the (muskip expr).

New: 2012-03-05

\muskip_zero:N \skip_zero:N (muskip)
\muskip_zero:c
\muskip_gzero:N

\muskip_gzero:c

Sets (muskip) to 0 mu.

\muskip_zero_new:N \muskip_zero_new:N <muskip>
\muskip_zero_new:c
\muskip_gzero_new:N

\muskip_gzero_new:c

Ensures that the (muskip) exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the (muskip) set to zero.

New: 2012-01-07

\muskip_if_exist_p:N

* \muskip_if_exist_p:N (muskip)
\muskip_if_exist_p:c %

*

*

\muskip_if_exist:NTF (muskip) {(true code)} {(false code)}

Tests whether the (muskip) is currently defined. This does not check that the (muskip)
really is a muskip variable.

\muskip_if_exist:NTF
\muskip_if_exist:cIF

New: 2012-03-03

25.20 Setting muskip variables

\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn

\muskip_add:Nn (muskip) {(muskip expr)}
Adds the result of the (muskip expr) to the current content of the (muskip).

Updated: 2011-10-22

226

\muskip_set:Nn
\muskip_set:cn
\muskip_gset:Nn
\muskip_gset:cn

Updated: 2011-10-22

\muskip_set_eq:NN
\muskip_set_eq:(cN|Nc|cc)
\muskip_gset_eq:NN
\muskip_gset_eq:(cN|Nc|cc)

\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Updated: 2011-10-22

\muskip_eval:n *

Updated: 2011-10-22

\muskip_use:N x
\muskip_use:c *

\muskip_show:N
\muskip_show:c

Updated: 2015-08-03

\muskip_set:Nn (muskip) {(muskip expr)}

Sets (muskip) to the value of (muskip expr), which must evaluate to a math length with
units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set_eq:NN (muskip:) (muskips)
Sets the content of (muskip;) equal to that of (muskips).

\muskip_sub:Nn (muskip) {(muskip expr)}

Subtracts the result of the (muskip expr) from the current content of the (muskip).

25.21 Using muskip expressions and variables

\muskip_eval:n {(muskip expr)}

Evaluates the (muskip expr), expanding any skips and token list variables within the
(expression) to their content (without requiring \muskip_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. The result of the calculation is left in the input
stream as a (muglue denotation) after two expansions. This is expressed in mu, and re-
quires suitable termination if used in a TEX-style assignment as it is not an (internal
muglue).

\muskip_use:N (muskip)

Recovers the content of a (skip) and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(dimension) is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

25.22 Viewing muskip variables

\muskip_show:N (muskip)

Displays the value of the (muskip) on the terminal.

227

\muskip_show:n

New: 2011-11-22
Updated: 2015-08-07

\muskip_log:N
\muskip_log:c
New: 2014-08-22
Updated: 2015-08-03
\muskip_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_muskip

\c_zero_muskip

\1_tmpa_muskip
\1_tmpb_muskip

\g_tmpa_muskip
\g_tmpb_muskip

\if_dim:w *

\muskip_show:n {(muskip expr)}

Displays the result of evaluating the (muskip ezpr) on the terminal.

\muskip_log:N (muskip)
Writes the value of the (muskip) in the log file.

\muskip_log:n {(muskip expr)}
Writes the result of evaluating the (muskip expr) in the log file.

25.23 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

A zero length as a muskip, with no stretch nor shrink component.

25.24 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

25.25 Primitive conditional

\if_dim:w (dimen;) (relation) (dimens)
(true code)

\else:
(false)

\fi:

Compare two dimensions. The (relation) is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

228

Chapter 26

The 13keys package
Key—value interfaces

The key—value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro [
key-one = value one,
key-two = value two

J{argument}

for the user.

The high level functions here are intended as a method to create key—value controls.
Keys are themselves created using a key—value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n
key-two .tl_set:N
by

code including parameter #1,
\1_mymodule_store_tl

These values can then be set as with other key—value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

¥

229

As illustrated, keys are created inside a (module): a set of related keys, typically those
for a single module/I4TEX 2¢ package. See Section for suggestions on how to divide large
numbers of keys for a single module.

At a document level, \keys_set :nn is used within a document function, for example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } 1}
\DeclareDocumentCommand \MyModuleMacro { o m }
{
\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro
\group_end:
}

Key names may contain any tokens, as they are handled internally using \t1_to_-
str:n. As discussed in section 26.2, it is suggested that the character / is reserved for
sub-division of keys into logical groups. Functions and variables are not expanded when
creating key names, and so

\tl_set:Nn \1_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\1_mymodule_tmp_tl .code:n = code
}

creates a key called \1_mymodule_tmp_t1, and not one called key.

26.1 Creating keys

\keys_define:nn \keys_define:nn {(module)} {(keyval list)}

Updated: 2017-11-14 Parses the (keyval list) and defines the keys listed there for (module). The (module)
T name is treated as a string. In practice the (module) should be chosen to be unique to
the module in question (unless deliberately adding keys to an existing module).
The (keyval list) should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using-~#1,
keyname .value_required:n = true

}

where the properties of the key begin from the . after the key name.

The various properties available take either no arguments at all, or require one
or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary (key), which when used may be supplied with a (value). All key definitions are
local.

230

.bool_set:N
.bool_set:c
.bool_gset:N
.bool_gset:c

Updated: 2013-07-08

.bool_set_inverse:N
.bool_set_inverse:c
.bool_gset_inverse:N
.bool_gset_inverse:c

New: 2011-08-28
Updated: 2013-07-08

.choice:

.choices:nn
.choices:(Vn|on|xn)

New: 2011-08-21
Updated: 2013-07-10

.clist_set:N

.clist_set:c
.clist_gset:N

.clist_gset:c

New: 2011-09-11

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., override one
another. Some other properties are mutually exclusive, notably .value_required:n and
.value_forbidden:n, and so they replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
definitions are equivalent.

\keys_define:nn { mymodule }

{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true
by
\keys_define:nn { mymodule }
{

keyname .value_required:n = true,
keyname .code:n Some~code~using~#1

3

Note that with the exception of the special .undefine: property, all key properties define
the key within the current TEX scope.

(key) .bool_set:N = (boolean variable)

Defines (key) to set (boolean wvariable) to (value) (which must be either “true” or
“false”). If the variable does not exist, it will be created globally at the point that
the key is set up.

(key) .bool_set_inverse:N = (boolean variable)

Defines (key) to set (boolean variable) to the logical inverse of (value) (which must be
either “true” or “false”). If the (boolean variable) does not exist, it will be created
globally at the point that the key is set up.

(key) .choice:

Sets (key) to act as a choice key. Each valid choice for (key) must then be created, as
discussed in section 26.3.

(key) .choices:nn = {(choices)} {(code)}

Sets (key) to act as a choice key, and defines a series (choices) which are implemented
using the (code). Inside (code), \1_keys_choice_t1l will be the name of the choice
made, and \1_keys_choice_int will be the position of the choice in the list of {choices)
(indexed from 1). Choices are discussed in detail in section 26.3.

(key) .clist_set:N = (comma list variable)

Defines (key) to set {comma list variable) to (value). Spaces around commas and empty
items will be stripped. If the variable does not exist, it is created globally at the point
that the key is set up.

231

.code:n (key) .code:n = {(code)}

Updated: 2013-07-10 Stores the (code) for execution when (key) is used. The (code) can include one parameter
(#1), which will be the (value) given for the (key).

.cs_set:Np (key) .cs_set:Np = (control sequence) (arg. spec.)
.cs_set:cp
.cs_set_protected:Np
.cs_set_protected:cp
.cs_gset:Np
.cs_gset:cp
.cs_gset_protected:Np
.cs_gset_protected:cp

Defines (key) to set (control sequence) to have (arg. spec.) and replacement text (value).

New: 2020-01-11

.default:n (key) .default:n = {(default)}

-default:(Vlolx) Creates a (default) value for (key), which is used if no value is given. This will be used

Updated: 2013-07-09 if only the key name is given, but not if a blank (value) is given:

\keys_define:nn { mymodule }

{
key .code:n = Hello~#1,
key .default:n = World

}

\keys_set:nn { mymodule }

{
key = Fred, J% Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value does not trigger an error.

When no value is given for a key as part of \keys_set:nn, the .default:n value
provides the value before key properties are considered. The only exception is when
the .value_required:n property is active: a required value cannot be supplied by the
default, and must be explicitly given as part of \keys_set :nn.

.dim_set:N (key) .dim_set:N = (dimension)
.dim_set:c
.dim_gset:N
.dim_gset:c

Defines (key) to set (dimension) to (value) (which must a dimension expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key

———— will require a value at point-of-use unless a default is set.
Updated: 2020-01-17

.fp_set:N (key) .fp_set:N = (floating point)
.ip_szZ:N Defines (key) to set (floating point) to (value) (which must a floating point expression).
: fg_ise t:c If the variable does not exist, it is created globally at the point that the key is set up.

————— The key will require a value at point-of-use unless a default is set.
Updated: 2020-01-17

232

.groups:n

New: 2013-07-14

.inherit:n

New: 2016-11-22

.injtial:n
.initial:(V]o|x)

Updated: 2013-07-09

.int_set:N
.int_set:c
.int_gset:N
.int_gset:c

Updated: 2020-01-17

.legacy_if_set:n
.legacy_if_gset:n
.legacy_if_set_inverse:n
.legacy_if_gset_inverse:n

Updated: 2022-01-15

.meta:n

Updated: 2013-07-10

(key) .groups:n = {(groups)}

Defines (key) as belonging to the (groups) declared. Groups provide a “secondary axis”
for selectively setting keys, and are described in Section 26.7.

(key) .inherit:n = {(parents)}
Specifies that the (key) path should inherit the keys listed as any of the (parents) (a
comma list), which can be a module or a subgroup. For example, after setting

\keys_define:nn { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:nn { } { bar .inherit:n = foo }

setting

\keys_set:nn { bar } { test = a }
will be equivalent to

\keys_set:nn { foo } { test = a }

Inheritance applies at point of use, not at definition, thus keys may be added to the
(parent) after the use of .inherit:n and will be active. If more than one (parent) is
specified, the presence of the (key) will be tested for each in turn, with the first successful
hit taking priority.

(key) .initial:n = {(value)}

Initialises the (key) with the (value), equivalent to
\keys_set:nn {(module)} { (key) = (value) }

(key) .int_set:N = (integer)

Defines (key) to set (integer) to (value) (which must be an integer expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

(key) .legacy_if_set:n = (switch)

Defines (key) to set legacy \if (switch) to (value) (which must be either “true” or
“false”). The (switch) is the name of the switch without the leading \if.
The inverse versions will set the (switch) to the logical opposite of the (value).

(key) .meta:n = {(keyval list)}

Makes (key) a meta-key, which will set (keywval list) in one go. The (keyval list) can refer
as #1 to the value given at the time the (key) is used (or, if no value is given, the (key)’s
default value).

233

.meta:nn

New: 2013-07-10

.multichoice:

New: 2011-08-21

.multichoices:nn
,multichoices:(Vn|onixn)

New: 2011-08-21
Updated: 2013-07-10

.muskip_set:N
.muskip_set:c
.muskip_gset:N
.muskip_gset:c

New: 2019-05-05
Updated: 2020-01-17

.prop_put:N
.prop_put:c
.prop_gput:N
.prop_gput:c

New: 2019-01-31

.skip_set:N
.skip_set:c
.skip_gset:N
.skip_gset:c

Updated: 2020-01-17

.str_set:N
.str_set:c
.str_gset:N
.str_gset:c

New: 2021-10-30

.str_set_x:N
.str_set_x:c
.str_gset_x:N
.str_gset_x:c

New: 2021-10-30

(key) .meta:nn = {(path)} {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go using the (path) in place of
the current one. The (keyval list) can refer as #1 to the value given at the time the (key)
is used (or, if no value is given, the (key)’s default value).

(key) .multichoice:

Sets (key) to act as a multiple choice key. Each valid choice for (key) must then be
created, as discussed in section 26.3.

(key) .multichoices:nn {(choices)} {(code)}

Sets (key) to act as a multiple choice key, and defines a series (choices) which are im-
plemented using the (code). Inside (code), \1_keys_choice_t1 will be the name of the
choice made, and \1_keys_choice_int will be the position of the choice in the list of
(choices) (indexed from 1). Choices are discussed in detail in section 26.3.

(key) .muskip_set:N = (muskip)

Defines (key) to set (muskip) to (value) (which must be a muskip expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

(key) .prop_put:N = (property list)

Defines (key) to put the (value) onto the (property list) stored under the (key). If the
variable does not exist, it is created globally at the point that the key is set up.

(key) .skip_set:N = (skip)

Defines (key) to set (skip) to (value) (which must be a skip expression). If the variable
does not exist, it is created globally at the point that the key is set up. The key will
require a value at point-of-use unless a default is set.

(key) .str_set:N = (string variable)

Defines (key) to set (string variable) to (value). If the variable does not exist, it is created
globally at the point that the key is set up.

(key) .str_set_x:N = (string variable)

Defines (key) to set (string variable) to (value), which will be subjected to an x-type
expansion (i.e. using \str_set:Nx). If the variable does not exist, it is created globally
at the point that the key is set up.

234

.tl_set:N
.tl_set:c
.tl_gset:N
.tl_gset:c

.tl_set_x:N
.tl_set_x:c
.tl_gset_x:N
.tl_gset_x:c

.undefine:

New: 2015-07-14

.value_forbidden:n

New: 2015-07-14

.value_required:n

New: 2015-07-14

(key) .tl_set:N = (token list variable)

Defines (key) to set (token list variable) to (value). If the variable does not exist, it is
created globally at the point that the key is set up.

(key) .tl_set_x:N = (token list variable)

Defines (key) to set (token list variable) to (value), which will be subjected to an x-type
expansion (i.e. using \t1l_set:Nx). If the variable does not exist, it is created globally
at the point that the key is set up.

(key) .undefine:

Removes the definition of the (key) within the current scope.

(key) .value_forbidden:n = truel|false

Specifies that (key) cannot receive a (value) when used. If a (value) is given then an error
will be issued. Setting the property “false” cancels the restriction.

(key) .value_required:n = true|false

Specifies that (key) must receive a (value) when used. If a (value) is not given then an
error will be issued. Setting the property “false” cancels the restriction.

26.2 Sub-dividing keys

When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { mymodule / subgroup }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subgroup / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name mymodule/subgroup/key.

As illustrated in the next section, this subdivision is particularly relevant to making
multiple choices.

26.3 Choice and multiple choice keys

The I3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

235

\1_keys_choice_int
\1_keys_choice_t1l

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }

{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position~\int_use:N \1_keys_choice_int \c_space_tl
in~the~1list.

}

}

The index \1_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \1_keys_-
choice_t1 and \1_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the
choice name) is also available as #1.

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

3

It is possible to mix the two methods, but manually-created choices should not
use \1_keys_choice_tl or \1_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 26.6. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{

key .choice:,

236

key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =

\msg_error:nnxxx { mymodule } { unknown-choice }

{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

}

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

\keys_define:nn { mymodule }

{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position~
\int_use:N \1_keys_choice_int \c_space_tl
in~the~list.
}
}

and

\keys_define:nn { mymodule }

{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
¥
are valid.

When a multiple choice key is set

\keys_set:nn { mymodule }
{
key ={a, b, c} % ’key’ defined as a multiple choice
}

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }

237

key = ¢ ,
}

Thus each separate choice will have passed to it the \1_keys_choice_t1 and \1_keys_-
choice_int in exactly the same way as described for .choices:nn.

26.4 Key usage scope

Some keys will be used as settings which have a strictly limited scope of usage. Some
will be only available once, others will only be valid until typesetting begins. To allow
formats to support this in a structured way, 13keys allows this information to be specified
using the .usage:n property.

.usage:n (key) .usage:n = (scope)

New: 2022-01-10 Defines the (key) to have usage within the (scope), which should be one of general,
preamble or load.

\1_keys_usage_load_prop
\1_keys_usage_preamble_prop

New: 2022-01-10

I3keys itself does not attempt to redefine keys based on the usage scope. Rather, this
information is made available with these two property lists. These hold an entry for each
module (prefix); the value of each entry is a comma-separated list of the usage-restricted

key(s).

26.5 Setting keys

\keys_set:nn \keys_set:nn {(module)} {(keyval list)}

\keys_set: (aVlnvinojnx) Parses the (keyval list), and sets those keys which are defined for (module). The behaviour

Updated: 2017-11-14 on finding an unknown key can be set by defining a special unknown key: this is illustrated
later.

238

\1_keys_key_str TFor each key processed, information of the full path of the key, the name of the key and
\1_keys_path_str the yalue of the key is available within two string and one token list variables. These
\l_keys_value_tl ;5 he ysed within the code of the key.
Updated: 2020-02-08 The value is everything after the =, which may be empty if no value was given. This
is stored in \1_keys_value_tl, and is not processed in any way by \keys_set:nn.
The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }
has path mymodule/key-a while
\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \1_keys_path_str.

The name of the key is the part of the path after the last /, and thus is not unique.
In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \1_keys_key_str.

26.6 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set :nn looks for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts.

\keys_define:nn { mymodule }
{
unknown .code:n =
You~tried~to~set~key~’\1_keys_key_str’~to~’#1’.

}
\keys_set_known:nn \keys_set_known:nn {(module)} {(keyval list)}
\keys_set_known:(nV|nv|no) \keys_set_known:nnN {(module)} {(keyval list)} (t1)
\keys_set_known:nnN \keys_set_known:nnnN {(module)} {(keyval list)} {(root)} (t1)

\keys_set_known: (nVN|nvN|noN)
\keys_set_known:nnnN
\keys_set_known: (nVnN|nvnN|nonN)

New: 2011-08-23
Updated: 2019-01-29

These functions set keys which are known for the (module), and simply ignore other
keys. The \keys_set_known:nn function parses the (keyval list), and sets those keys
which are defined for (module). Any keys which are unknown are not processed further
by the parser. In addition, \keys_set_known:nnN stores the key—value pairs in the ()
in comma-separated form (i.e. an edited version of the (keyval list)). When a (root) is
given (\keys_set_known:nnnN), the key—value entries are returned relative to this point
in the key tree. When it is absent, only the key name and value are provided. The correct
list is returned by nested calls.

239

26.7 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys_define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \1l_my_a_tl ,
key-three .tl_set:N = \1_my_b_tl ,
key-four .fp_set:N = \1_my_a_fp s

3

the use of \keys_set :nn attempts to set all four keys. However, in some contexts it may
only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys_define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \1_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \1_my_b_tl ,
key-three .groups:n = { second } s
key-four .fp_set:N = \1_my_a_fp ,

3

assigns key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_filter:nnn \keys_set_filter:nnn {(module)} {(groups)} {(keyval list)}
\keys_set_filter:(nnV|nnv|nno) \keys_set_filter:nnnN {(module)} {(groups)} {(keyval list)} (t1)
\keys_set_filter:nnnN \keys_set_filter:nnnnN {(module)} {(groups)} {(keyval 1ist)} (root)

\keys_set_filter:(nnVN|nnvN|nnoN) (t1)
\keys_set_filter :nnnnN
\keys_set_filter:(nnVnN|nnvnN|nnonN)

New: 2013-07-14
Updated: 2019-01-29

Activates key filtering in an “opt-out” sense: keys assigned to any of the (groups) specified
are ignored. The (groups) are given as a comma-separated list. Unknown keys are not
assigned to any group and are thus always set. The key—value pairs for each key which
is filtered out are stored in the (#) in a comma-separated form (i.e. an edited version of
the (keyval list)). The \keys_set_filter:nnn version skips this stage.

Use of \keys_set_filter:nnnN can be nested, with the correct residual (keyval
list) returned at each stage. In the version which takes a (root) argument, the key list is
returned relative to that point in the key tree. In the cases without a (root) argument,
only the key names and values are returned.

240

\keys_set_groups:nnn \keys_set_groups:nnn {(module)} {(groups)} {(keyval list)}
\keys_set_groups: (nnV|nnv|nno)

New: 2013-07-14
Updated: 2017-05-27

Activates key filtering in an “opt-in” sense: only keys assigned to one or more of the
(groups) specified are set. The (groups) are given as a comma-separated list. Unknown
keys are not assigned to any group and are thus never set.

26.8 Digesting keys

\keys_precompile:nnN \keys_precompile:nnN {(module)} {(keyval list)} (t1)

New: 2022-03-09 Parses the (keyval list) as for \keys_set:nn, placing the resulting code for those which
set variables or functions into the (¢l). Thus this function “precompiles” the keyval list
into a set of results which can be applied rapidly.

26.9 Utility functions for keys

\keys_if_exist_p:nn {(module)} {(key)}
\keys_if_exist:nnTF {(module)} {(key)} {(true code)} {(false code)}

\keys_if_exist_p:nn
\keys_if_exist_p:ne
\keys_if_exist:nnTF

\keys_if_exist:neTF

*
*
: Tests if the (key) exists for (module), i.e. if any code has been defined for (key).

Updated: 2022-01-10

)
)

(choice)}
(choice)} {(true code)}

\keys_if_choice_exist_p:nnn x \keys_if_choice_exist_p:nnn {(module)}
\keys_if_choice_exist:nnnTF x \keys_if_choice_exist:nnnTF {<module)}
{(false code)}

{{key)} {
{(key)} {

New: 2011-08-21
Updated: 2017-11-14

Tests if the (choice) is defined for the (key) within the (module), i.e. if any code has been
defined for (key)/(choice). The test is false if the (key) itself is not defined.

\keys_show:nn \keys_show:nn {(module)} {(key)}

Updated: 2015-08-09 Displays in the terminal the information associated to the (key) for a (module), including
the function which is used to actually implement it.

\keys_log:nn \keys_log:nn {(module)} {(key)}

New: 2014-08-22 Writes in the log file the information associated to the (key) for a (module). See also
Updated: 2015-08-09 \keys_show:nn which displays the result in the terminal.

241

26.10 Low-level interface for parsing key—val lists

To re-cap from earlier, a key—value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key—value pair is separated by a comma from the rest of the list, and each
key—value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The
low-level parsing system converts a (key—value list) into (keys) and associated (values).
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key—value
list. One function is needed to process key—value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces have exactly one
set removed (after space trimming), thus

key = {value here},
and
key = value here,

are treated identically.

242

\keyval_parse:nnn % \keyval_parse:nnn {(codei)} {{code2)} {(key-value list)}

New: 2020-12-19 Parses the (key—value list) into a series of (keys) and associated (values), or keys alone
Updated: 2021-05-10 (if no (value) was given). (code;) receives each (key) (with no (value)) as a trailing brace
group, whereas (codes) is appended by two brace groups, the (key) and (value). The

order of the (keys) in the (key—value list) is preserved. Thus

\keyval_parse:nnn
{ \use_none:nn { code 1
{ \use_none:nnn { code 2
valuel , key2

{ keyl =

is converted into an input stream

\use_none
\use_none
\use_none
\use_none

:nnn {
:nnn {
:nnn {
:nn {

code
code
code
code

NN N
S T

P A

}r
}3r
value2, key3 = , key4 }

keyl } { valuel }
key2 } { value2 }
key3 } { }

key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
(key) and (value), then one outer set of braces is removed from the (key) and (value) as
part of the processing. If you need exactly the output shown above, you’ll need to either
x-type or e-type expand the function.

TEXhackers note: The result of each list element is returned within \exp_not:n, which

means that the converted input stream does not expand further when appearing in an x-type or

e-type argument expansion.

243

\keyval_parse:NNn % \keyval_parse:NNn (functiom;) (functioms) {(key-value list)}

Updated: 2021-05-10 Parses the (key—value list) into a series of (keys) and associated (values), or keys alone
(if no (value) was given). (function;) should take one argument, while (functions)
should absorb two arguments. After \keyval_parse:NNn has parsed the (key—value list),
(functiony) is used to process keys given with no value and (functions) is used to process
keys given with a value. The order of the (keys) in the (key—value list) is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ keyl = valuel , key2 = value2, key3 = , key4 }

is converted into an input stream

\function:nn { keyl } { valuel }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
(key) and (value), then one outer set of braces is removed from the (key) and (value) as
part of the processing.

This shares the implementation of \keyval_parse:nnn, the difference is only se-
mantically.

TEXhackers note: The result is returned within \exp_not:n, which means that the con-
verted input stream does not expand further when appearing in an x-type or e-type argument
expansion.

244

Chapter 27

The 13intarray package: Fast
global integer arrays

27.1 I3intarray documentation

For applications requiring heavy use of integers, this module provides arrays which can
be accessed in constant time (contrast 13seq, where access time is linear). These arrays
have several important features

e The size of the array is fixed and must be given at point of initialisation

 The absolute value of each entry has maximum 230 — 1 (i.e. one power lower than
the usual \c_max_int ceiling of 23! — 1)

The use of intarray data is therefore recommended for cases where the need for fast
access is of paramount importance.

\intarray_new:Nn \intarray_new:Nn (intarray var) {(size)}

\intarray new:ch p .1iates the integer expression (size) and allocates an (integer array variable) with that

New: 2018-03-29 pnumber of (zero) entries. The variable name should start with \g_ because assignments
are always global.

\intarray_count:N * \intarray_count:N (intarray var)

\intarray_count:c Expands to the number of entries in the (integer array variable). Contrarily to \seq_-

New: 2018-03-29 count:N this is performed in constant time.

\intarray_gset:Nnn \intarray_gset:Nnn (intarray var) {(position)} {(value)}
\intarray_gset:cnn

Stores the result of evaluating the integer expression (value) into the (integer array
New: 2018-03-29 ygariable) at the (integer expression) (position). If the (position) is not between 1 and
the \intarray_count:N, or the (value)’s absolute value is bigger than 230 — 1, an error
occurs. Assignments are always global.

245

\intarray_const_from_
\intarray_const_from_

clist:Nn \intarray_const_from_clist:Nn (intarray var) (int expr clist)
clist:cn

New:

2018-05-04

\intarray_gzero:N
\intarray_gzero:c

New: 2018-05-04

\intarray_item:Nn *
\intarray_item:cn *

New: 2018-03-29

\intarray_rand_item:N *
\intarray_rand_item:c x

New: 2018-05-05

\intarray_show:N
\intarray_show:c
\intarray_log:N
\intarray_log:c

New: 2018-05-04

Creates a new constant (integer array variable) or raises an error if the name is already
taken. The (integer array variable) is set (globally) to contain as its items the results of
evaluating each (integer expression) in the {comma list).

\intarray_gzero:N (intarray var)

Sets all entries of the (integer array variable) to zero. Assignments are always global.

\intarray_item:Nn (intarray var) {(position)}

Expands to the integer entry stored at the (integer expression) (position) in the (integer
array variable). If the (position) is not between 1 and the \intarray_count:N, an error
occurs.

\intarray_rand_item:N (intarray var)

Selects a pseudo-random item of the (integer array). If the (integer array) is empty,
produce an error.

\intarray_show:N (intarray var)
\intarray_log:N (intarray var)

Displays the items in the (integer array variable) in the terminal or writes them in the
log file.

27.1.1 Implementation notes

It is a wrapper around the \fontdimen primitive, used to store arrays of integers (with
a restricted range: absolute value at most 230 — 1). In contrast to I3seq sequences the
access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the I3intarray package transparently converts these from/to integers. Assignments are
always global.

While LuaTgX’s memory is extensible, other engines can “only” deal with a bit less
than 4 x 10% entries in all \fontdimen arrays combined (with default TEX Live settings).

246

Chapter 28

The 13fp package: Floating
points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions (“(fp expr)”) support the following operations
with their usual precedence.

(not yet)

Basic arithmetic: addition x 4 y, subtraction x — y, multiplication x * y, division
x/y, square root /x, and parentheses.

Comparison operators: x <y, x <=y, x >7y, x! =y etc.

Boolean logic: sign signz, negation !z, conjunction z&&y, disjunction z ||y,
ternary operator x 7y : z.

Exponentials: expx, Inz, 2¥, logb x.
Integer factorial: fact x.

Trigonometry: sinz, cosz, tanx, cotx, secx, cscz expecting their arguments in
radians, and sind x, cosd z, tand z, cotd x, secd x, cscd x expecting their arguments
in degrees.

Inverse trigonometric functions: asinx, acosx, atan x, acot x, asec x, acscx giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

Hyperbolic functions and their inverse functions: sinhx, coshz, tanhz, cothz,
sech x, csch, and asinh x, acosh z, atanh x, acoth x, asech x, acsch x.

Extrema: max(z1, o, ...), min(zy,zs,...), abs(x).

Rounding functions, controlled by two optional values, n (number of places, 0 by
default) and ¢ (behavior on a tie, nan by default):

— trunc(z, n) rounds towards zero,

— floor(z, n) rounds towards —oo,

247

— ceil(z, n) rounds towards +o0,

— round(z,n,t) rounds to the closest value, with ties rounded to an even value
by default, towards zero if ¢t = 0, towards +oo if ¢ > 0 and towards —oo if
t<0.

And (not yet) modulo, and “quantize”.
o Random numbers: rand(), randint(m,n).
o Constants: pi, deg (one degree in radians).
e Dimensions, automatically expressed in points, e.g., pc is 12.

o Automatic conversion (no need for \(type)_use:N) of integer, dimension, and skip
variables to floating point numbers, expressing dimensions in points and ignoring
the stretch and shrink components of skips.

o Tuples: (z1,...,2,) that can be stored in variables, added together, multiplied or
divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. A “floating point” is a floating point number or a tuple thereof. See sec-
tion 28.10.1 for a description of what a floating point is, section 28.10.2 for details about
how an expression is parsed, and section 28.10.3 to know what the various operations do.
Some operations may raise exceptions (error messages), described in section 28.8.

An example of use could be the following,.

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10~{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin(3.5)/2 + 2e-3} $.

The operation round can be used to limit the result’s precision. Adding +0 avoids the
possibly undesirable output -0, replacing it by +0. However, the [3fp module is mostly
meant as an underlying tool for higher-level commands. For example, one could provide
a function to typeset nicely the result of floating point computations.

\documentclass{article}

\usepackage{xparse, siunitx}

\ExplSyntax0On

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\begin{document}

\calcnum { 2 pi * sin (2.3 = 5) }

\end{document}

See the documentation of siunitx for various options of \num.

248

\fp_new:N
\fp_new:c

Updated: 2012-05-08

\fp_const:Nn
\fp_const:cn

Updated: 2012-05-08

\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Updated: 2012-05-08

\fp_zero_new:N
\fp_zero_new:c
\fp_gzero_new:N
\fp_gzero_new:c

Updated: 2012-05-08

\fp_set:Nn
\fp_set:cn
\fp_gset:Nn
\fp_gset:cn

Updated: 2012-05-08

\fp_set_eq:NN
\fp_set_eq: (cN|Nc|cc)
\fp_gset_eq:NN
\fp_gset_eq:(cN|Nc|cc)

Updated: 2012-05-08

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn

Updated: 2012-05-08

28.1 Creating and initialising floating point variables

\fp_new:N (fp var)

Creates a new (fp var) or raises an error if the name is already taken. The declaration is
global. The (fp var) is initially +0.

\fp_const:Nn (fp var) {(fp expr)}

Creates a new constant (fp var) or raises an error if the name is already taken. The
(fp var) is set globally equal to the result of evaluating the (fp expr).

\fp_zero:N (fp var)
Sets the (fp var) to +0.

\fp_zero_new:N (fp var)

Ensures that the (fp var) exists globally by applying \fp_new:N if necessary, then applies
\fp_(g)zero:N to leave the (fp var) set to +0.

28.2 Setting floating point variables
\fp_set:Nn (fp var) {(fp expr)}

Sets (fp var) equal to the result of computing the (fp expr).

\fp_set_eq:NN (fp vari) (fp vars)

Sets the floating point variable (fp var;) equal to the current value of (fp vary).

\fp_add:Nn (fp var) {(fp expr)}

Adds the result of computing the {fp expr) to the (fp var). This also applies if (fp var)
and (floating point expression) evaluate to tuples of the same size.

249

\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

Updated: 2012-05-08

\fp_eval:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_sign:n *

New: 2018-11-03

\fp_to_decimal:N *
\fp_to_decimal:c %
\fp_to_decimal:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_dim:N «*
\fp_to_dim:c =
\fp_to_dim:n «*

Updated: 2016-03-22

\fp_to_int:N =
\fp_to_int:c *
\fp_to_int:n «*

Updated: 2012-07-08

\fp_sub:Nn (fp var) {(fp expr)}

Subtracts the result of computing the (floating point expression) from the (fp var). This
also applies if (fp var) and (floating point expression) evaluate to tuples of the same size.

28.3 Using floating points

\fp_eval:n {(fp expr)}

Evaluates the (fp expr) and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values +00 and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_eval:n and they are combined as ({fp1),L(fp2),u. .. (fpn)) if n > 1
and ({fp1),) or) for fewer items. This function is identical to \fp_to_decimal:n.

\fp_sign:n {(fp expr)’}

Evaluates the (fp expr) and leaves its sign in the input stream using \fp_eval:n
{sign((result))}: +1 for positive numbers and for 400, —1 for negative numbers and
for —oo, +0 for £0. If the operand is a tuple or is nan, then “invalid operation” occurs
and the result is 0.

\fp_to_decimal:N (fp var)

\fp_to_decimal:n {(fp expr)}

Evaluates the (fp expr) and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values +0o0 and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as ({fp1),u{fp2),u--. (fon))
if n>1and ((fp1),) or OO for fewer items.

\fp_to_dim:N (fp var)

\fp_to_dim:n {(fp expr)}

Evaluates the (fp expr) and expresses the result as a dimension (in pt) suitable for
use in dimension expressions. The output is identical to \fp_to_decimal:n, with an
additional trailing pt (both letter tokens). In particular, the result may be outside the
range [—21 +2717 214 2717 of valid TEX dimensions, leading to overflow errors if used
as a dimension. Tuples, as well as the values +00 and nan, trigger an “invalid operation”
exception.

\fp_to_int:N (fp var)

\fp_to_int:n {(fp expr)}

Evaluates the (fp expr), and rounds the result to the closest integer, rounding exact ties
to an even integer. The result may be outside the range [—23! + 1,23} — 1] of valid
TEX integers, leading to overflow errors if used in an integer expression. Tuples, as well
as the values +o0o and nan, trigger an “invalid operation” exception.

250

\fp_to_scientific:N
\fp_to_scientific:c
\fp_to_scientific:n

* \fp_to_scientific:N (fp var)
* \fp_to_scientific:n {(fp expr)}

* Evaluates the (fp ezpr) and expresses the result in scientific notation:

New: 2012-05-08
Updated: 2016-03-22 (optional =) {digit).(15 digits)e{optional sign){exponent)

\fp_to_t1l:N

\fp_to_tl:c
\fp_to_tl:n

The leading (digit) is non-zero except in the case of 0. The values +oo and nan trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and
they are combined as ({fp1),u{fp2),u-.-{(fpn)) if n > 1 and ({fp1),) or) for fewer
items.

* \fp_to_t1:N (fp var)
* \fp_to_tl:n {(fp expr)}

Evaluates the (fp expr) and expresses the result in (almost) the shortest possible form.

Updated: 2016-03-22 Numbers in the ranges (0,1072) and [10'¢, c0) are expressed in scientific notation with

\fp_use:N
\fp_use:c

trailing zeros trimmed and no decimal separator when there is a single significant digit
(this differs from \fp_to_scientific:n). Numbers in the range [1073,10'6) are ex-
pressed in a decimal notation without exponent, with trailing zeros trimmed, and no
decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start
with -. The special values £0, +00 and nan are rendered as 0, -0, inf, —inf, and nan
respectively. Normal category codes apply and thus inf or nan, if produced, are made up
of letters. For a tuple, each item is converted using \fp_to_t1l:n and they are combined
as ((fp1),u(fp2) su- - - (fon)) if n > 1 and ((fp1),) or () for fewer items.

* \fp_use:N (fp var)

* Inserts the value of the (fp var) into the input stream as a decimal number with no

Updated: 2012-07-08 exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-

significant trailing zeros are trimmed. Integers are expressed without a decimal separator.
The values 00 and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as ({(fp1),u{fp2),u- .- (fon)) if
n > land ((fp1),) or O for fewer items. This function is identical to \fp_to_decimal:N.

28.4 Floating point conditionals

\fp_if_exist_p:N
\fp_if_exist_p:c
\fp_if_exist:NTIF
\fp_if_exist:cTF

* \fp_if_exist_p:N (fp var)
* \fp_if_exist:NTF (fp var) {(true code)} {(false code)}

* Tests whether the (fp var) is currently defined. This does not check that the (fp var)
really is a floating point variable.

*

Updated: 2012-05-08

251

\fp_compare_p:nNn *
\fp_compare:nNnTF *

Updated: 2012-05-08

\fp_compare_p:n *
\fp_compare:nTF *

Updated: 2013-12-14

\fp_compare_p:nlNn {(fp expri)} (relation) {(fp expr:)}
\fp_compare:nNnTF {(fp expri)} (relation) {(fp expr:)} {(true code)} {(false code)}

Compares the (fp expr;) and the (fp exprs), and returns true if the (relation) is obeyed.
Two floating points and y may obey four mutually exclusive relations: = < y, z = v,
x >y, or 7y (“not ordered”). The last case occurs exactly if one or both operands is nan
or is a tuple, unless they are equal tuples. Note that a nan is distinct from any value,
even another nan, hence r = x is not true for a nan. To test if a value is nan, compare
it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } 7 { 0 }
{ } % <value> is nan
{ } % <value> is not nan

Tuples are equal if they have the same number of items and items compare equal (in
particular there must be no nan). At present any other comparison with tuples yields ?
(not ordered). This is experimental.

This function is less flexible than \fp_compare :nTF but slightly faster. It is provided
for consistency with \int_compare:nNnTF and \dim_compare :nNnTF.

\fp_compare_p:n
{
(fp expri) (relation;)

(fp exprn) (relationn)
(fp expry41)
}
\fp_compare :nTF
{
(fp expri) (relation)

(fp expry) (relationn)
(fp expry+1)

}

{{true code)} {(false code)}

Evaluates the (fp exprs) as described for \fp_eval:n and compares consecutive result
using the corresponding (relation), namely it compares (fp expr:) and (fp exprs) using the
(relationy), then (fp exprs) and (fp exprs) using the (relations), until finally comparing
(fp expry) and (fp expry 1) using the (relationy). The test yields true if all comparisons
are true. Each (floating point expression) is evaluated only once. Contrarily to \int_-
compare:nTF, all (fp exprs) are computed, even if one comparison is false. Two floating
points x and y may obey four mutually exclusive relations: < y, x =y, x > y, or z?y
(“not ordered”). The last case occurs exactly if one or both operands is nan or is a tuple,
unless they are equal tuples. Each (relation) can be any (non-empty) combination of <,
=, >, and 7, plus an optional leading ! (which negates the (relation)), with the restriction
that the (relation) may not start with ?, as this symbol has a different meaning (in
combination with :) within floating point expressions. The comparison x (relation) y is
then true if the (relation) does not start with ! and the actual relation (<, =, >, or ?)
between z and y appears within the (relation), or on the contrary if the (relation) starts
with ! and the relation between z and y does not appear within the (relation). Common
choices of (relation) include >= (greater or equal), = (not equal), !? or <=> (comparable).
This function is more flexible than \fp_compare:nNnTF and only slightly slower.

252

\fp_if_nan_p:n *
\fp_if_nan:nTF *

New: 2019-08-25

e

\fp_do_until:nNnn %

New: 2012-08-16

\fp_do_while:nNnn 5

New: 2012-08-16

\fp_until_do:nNnn

New: 2012-08-16

\fp_while_do:nNnn

New: 2012-08-16

\fp_do_until:nn w

New: 2012-08-16
Updated: 2013-12-14

\fp_do_while:nn

New: 2012-08-16
Updated: 2013-12-14

\fp_if_nan_p:n {(fp expr)}

\fp_if_nan:nTF {(fp expr)} {(true code)} {(false code)}

Evaluates the (fp expr) and tests whether the result is exactly nan. The test returns
false for any other result, even a tuple containing nan.

28.5 Floating point expression loops

\fp_do_until:nNnn {(fp expri)} (relation) {(fp expr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is false then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is true.

\fp_do_while:nNnn {(fp expri)} (relation) {(fp expra)} {{code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is true then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is false.

\fp_until_do:nNnn {(fp expri)} (relation) {(fp expr:)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\fp_while_do:nNnn {(fp expri)} (relation) {(fp expr:)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test is repeated, and a loop occurs
until the test is false.

\fp_do_until:nn { (fp expri) (relation) (fp exprz) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare:nTF.
If the test is false then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is true.

\fp_do_while:nn { (fp expri) (relation) (fp exprz) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nTF. If
the test is true then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is false.

253

\fp_until_do:nn w

New: 2012-08-16
Updated: 2013-12-14

\fp_while_do:nn w

New: 2012-08-16
Updated: 2013-12-14

\fp_step_function:nnnN 3%
\fp_step_function:nnnc v

New: 2016-11-21
Updated: 2016-12-06

\fp_step_inline:nnnn

New: 2016-11-21
Updated: 2016-12-06

\fp_step_variable:nnnNn

New: 2017-04-12

\fp_until_do:nn { (fp expri) (relation) (fp exprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\fp_while_do:nn { (fp expri) (relation) (fp exprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test is repeated, and a loop occurs
until the test is false.

\fp_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and {final value), each of which
should be a floating point expression evaluating to a floating point number, not a tuple.
The (function) is then placed in front of each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)). The (step) must be non-zero. If the
(step) is positive, the loop stops when the (value) becomes larger than the (final value).
If the (step) is negative, the loop stops when the (value) becomes smaller than the (final
value). The (function) should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\fp_step_function:nnnN { 1.0 } { 0.1 } { 1.5 } \my_func:n

would print

[[saw 1.0 [Isaw 1.1] [Isaw 1.2] [Isaw 1.3] [Isaw 1.4] [Isaw 1.5

TgXhackers note: Due to rounding, it may happen that adding the (step) to the (value) does
not change the (value); such cases give an error, as they would otherwise lead to an infinite loop.

\fp_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be floating point expressions evaluating to a floating point number, not a tuple.
Then for each (value) from the (initial value) to the (final value) in turn (using (step)
between each (value)), the (code) is inserted into the input stream with #1 replaced by
the current (value). Thus the (code) should define a function of one argument (#1).

\fp_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (t1 var) {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which should
be floating point expressions evaluating to a floating point number, not a tuple. Then
for each (value) from the (initial value) to the (final value) in turn (using (step) between
each (value)), the (code) is inserted into the input stream, with the (¢ var) defined as
the current (value). Thus the (code) should make use of the (tl var).

254

\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

\c_one_fp

New: 2012-05-08

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

\c_e_fp

Updated: 2012-05-08

\c_pi_£fp

Updated: 2013-11-17

\c_one_degree_fp

New: 2012-05-08
Updated: 2013-11-17

\1_tmpa_£p
\1_tmpb_£p

\g_tmpa_£p
\g_tmpb_£p

28.6 Some useful constants, and scratch variables

Zero, with either sign.

One as an fp: useful for comparisons in some places.

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

The value of the base of the natural logarithm, e = exp(1).

The value of w. This can be input directly in a floating point expression as pi.

The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

28.7 Scratch variables

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any I¥TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any IXTEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

255

28.8 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0,o0r 10 **x 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

e Quverflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in doo.

e Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in +0.

o Inwvalid operation occurs for operations with no defined outcome, for instance 0/0
or sin(oo), and results in a nan. It also occurs for conversion functions whose target
type does not have the appropriate infinite or nan value (e.g., \fp_to_dim:n).

e Division by zero occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., In(0) or cot(0). This results in +oo.

(not yet) Inexact occurs whenever the result of a computation is not exact, in other words,

\fp_trap:nn

New: 2012-07-19
Updated: 2017-02-13

flag fp_overflow

flag fp_underflow

flag fp_invalid_operation
flag ,fp_division_by_zero

almost always. At the moment, this exception is entirely ignored in ITEX3.

To each exception we associate a “flag”: fp_overflow, fp_underflow, fp_invalid_-
operation and fp_division_by_zero. The state of these flags can be tested and mod-
ified with commands from [3flag

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_-
trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.

\fp_trap:nn {(exception)} {(trap type)}

All occurrences of the (exception) (overflow, underflow, invalid_operation or
division_by_zero) within the current group are treated as (trap type), which can be

» none: the (exception) will be entirely ignored, and leave no trace;
o flag: the (exception) will turn the corresponding flag on when it occurs;

o error: additionally, the (exception) will halt the TEX run and display some infor-
mation about the current operation in the terminal.

This function is experimental, and may be altered or remowved.

Flags denoting the occurrence of various floating-point exceptions.

256

28.9 Viewing floating points

\fp_show:N \fp_show:N (fp var)
\fp_show:c \fp_show:n {(fp expr)}
\fp_show:n

Evaluates the (fp expr) and displays the result in the terminal.
New: 2012-05-08
Updated: 2021-04-29

\fp_log:N \fp_log:N (fp var)
\fp_log:c \fp_log:n {(fp expr)}
\fp_log:n

Evaluates the (fp ezpr) and writes the result in the log file.
New: 2014-08-22
Updated: 2021-04-29

28.10 Floating point expressions

28.10.1 Input of floating point numbers
We support four types of floating point numbers:

e +m - 10", a floating point number, with integer 1 < m < 106, and —10000 < n <
10000;

e £0, zero, with a given sign;
e 00, infinity, with a given sign;

e mnan, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.
On input, a normal floating point number consists of:

o (sign): a possibly empty string of + and - characters;
o (significand): a non-empty string of digits together with zero or one dot;

o (exponent) optionally: the character e or E, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

The sign of the resulting number is + if (sign) contains an even number of -, and -
otherwise, hence, an empty (sign) denotes a non-negative input. The stored significand
is obtained from (significand) by omitting the decimal separator and leading zeros, and
rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the
value stored is exact if the input (significand) has at most 16 digits. The stored {ezponent)
is obtained by combining the input (ezponent) (0 if absent) with a shift depending on
the position of the significand and the number of leading zeros.

A special case arises if the resulting (exponent) is either too large or too small for the
floating point number to be represented. This results either in an overflow (the number
is then replaced by £00), or an underflow (resulting in £0).

257

The result is thus +0 if and only if (significand) contains no non-zero digit (i.e.,
consists only in characters 0, and an optional period), or if there is an underflow. Note
that a single dot is currently a valid floating point number, equal to 40, but that is not
guaranteed to remain true.

The (significand) must be non-empty, so el and e-1 are not valid floating point
numbers. Note that the latter could be mistaken with the difference of “e” and 1. To
avoid confusions, the base of natural logarithms cannot be input as e and should be input
as exp(1) or \c_e_£fp (which is faster).

Special numbers are input as follows:

o inf represents +o0o, and can be preceded by any (sign), yielding +oo as appropriate.

 nan represents a (quiet) non-number. It can be preceded by any sign, but that sign
is ignored.

e Any unrecognizable string triggers an error, and produces a nan.

e Note that commands such as \infty, \pi, or \sin do not work in floating point
expressions. They may silently be interpreted as completely unexpected numbers,
because integer constants (allowed in expressions) are commonly stored as mathe-
matical characters.

28.10.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

o Function calls (sin, 1n, etc).

o Binary ** and ~ (right associative).

e Unary +, -, !.

o Implicit multiplication by juxtaposition (2pi) when neither factor is in parentheses.

e Binary * and /, implicit multiplication by juxtaposition with parentheses (for in-
stance 3(4+5)).

e Binary + and -.

e Comparisons >=, !=, <7, etc.

e Logical and, denoted by &&.

e Logical or, denoted by ||.

o Ternary operator ?7: (right associative).

o Comma (to build tuples).

258

| 2]

&&

The precedence of operations can be overridden using parentheses. In particular, the
precedence of juxtaposition implies that

1/2pi = 1/(2n),
1/2pi(pi +pi) = (2m) " H(m +7) = 1,
sin2pi = sin(2)w # 0,
2"2max(3,5) = 22 max(3,5) = 20,
lin/1cm = (1lin)/(lcm) = 2.54.

Functions are called on the value of their argument, contrarily to TEX macros.

28.10.3 Operations

We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is £0, and true otherwise, including when it is nan or a tuple such as (0, 0).
Tuples are only supported to some extent by operations that work with truth values
(7:, 11, &&, '), by comparisons (!<=>7), and by +, -, *, /. Unless otherwise specified,
providing a tuple as an argument of any other operation yields the “invalid operation”
exception and a nan result.

\fp_eval:n { (operand:) ? (operands) : (operands) }

The ternary operator ?: results in (operands) if (operand;) is true (not +0), and
(operands) if (operand) is false (£0). All three (operands) are evaluated in all cases;
they may be tuples. The operator is right associative, hence

\fp_eval:n

{
1+3>471
2+ 4>572:
3+5>673:4
}

first tests whether 1 4+ 3 > 4; since this isn’t true, the branch following : is taken, and
244 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

\fp_eval:n { (operand:) || {operands) }

If (operand;) is true (not +0), use that value, otherwise the value of (operands). Both
(operands) are evaluated in all cases; they may be tuples. In (operand;) || {operands)
[l ... |l {operands,), the first true (nonzero) {operand) is used and if all are zero the
last one (£0) is used.

\fp_eval:n { (operand;) && (operand;) }

If (operandy) is false (equal to +0), use that value, otherwise the value of (operands). Both
(operands) are evaluated in all cases; they may be tuples. In (operand;) && (operands)
&% ... && {operands,), the first false (£0) (operand) is used and if none is zero the last
one is used.

259

NV A

Updated: 2013-12-14

1o+

I~ * |

1o+

*k

abs

\fp_eval:n
{

(operand,) (relation)

(operandy) (relationn)
(operandn 1)
}
Each (relation) consists of a non-empty string of <, =, >, and 7, optionally preceded by !,
and may not start with ?. This evaluates to +1 if all comparisons (operand;) (relation;)
(operand; 1) are true, and 40 otherwise. All (operands) are evaluated (once) in all cases.
See \fp_compare:nTF for details.

\fp_eval:n { (operand;) + (operand,) }
\fp_eval:n { (operand;) - (operands) }
Computes the sum or the difference of its two (operands). The “invalid operation” ex-
ception occurs for co — co. “Underflow” and “overflow” occur when appropriate. These
operations supports the itemwise addition or subtraction of two tuples, but if they have a
different number of items the “invalid operation” exception occurs and the result is nan.

\fp_eval:n { (operand;) * (operands) }

\fp_eval:n { (operand:) / (operand:) }

Computes the product or the ratio of its two (operands). The “invalid operation” ex-
ception occurs for co/oco, 0/0, or 0 % co. “Division by zero” occurs when dividing a
finite non-zero number by +0. “Underflow” and “overflow” occur when appropriate.
When (operand;) is a tuple and (operands) is a floating point number, each item of
(operandy) is multiplied or divided by (operands). Multiplication also supports the case
where (operand,) is a floating point number and (operands) a tuple. Other combinations
yield an “invalid operation” exception and a nan result.

\fp_eval:n { + (operand) }

\fp_eval:n { - (operand) }

\fp_eval:n { ! (operand) }

The unary + does nothing, the unary - changes the sign of the (operand) (for a tuple,
of all its components), and ! (operand) evaluates to 1 if (operand) is false (is £0) and 0
otherwise (this is the not boolean function). Those operations never raise exceptions.

\fp_eval:n { (operand;) ** (operands) }

\fp_eval:n { (operand;) ~ (operands) }

Raises (operand;) to the power {(operands). This operation is right associative, hence 2
**x 2 *x 3 equals 22" = 256. If (operand;) is negative or —0 then: the result’s sign is
+ if the (operands) is infinite and (—1)P if the (operandy) is p/5? with p, ¢ integers; the
result is 40 if abs ((operand;)) ~(operands) evaluates to zero; in other cases the “invalid
operation” exception occurs because the sign cannot be determined. “Division by zero”
occurs when raising +0 to a finite strictly negative power. “Underflow” and “overflow”
occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

\fp_eval:n { abs((fp expr)) }

Computes the absolute value of the (fp expr). If the operand is a tuple, “invalid operation”
occurs. This operation does not raise exceptions in other cases. See also \fp_abs:n.

260

exp

fact

1n

logb *

New: 2018-11-03

max
min

\fp_eval:n { exp((fp expr)) }

Computes the exponential of the (fp ezpr). “Underflow” and “overflow” occur when
appropriate. If the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { fact((fp expr)) }

Computes the factorial of the (fp expr). If the (fp expr) is an integer between —0 and
3248 included, the result is finite and correctly rounded. Larger positive integers give
400 with “overflow”, while fact (+00) = 400 and fact (nan) = nan with no exception.
All other inputs give nan with the “invalid operation” exception.

\fp_eval:n { 1n((fp expr)) }

Computes the natural logarithm of the (fp expr). Negative numbers have no (real)
logarithm, hence the “invalid operation” is raised in that case, including for In(—0).
“Division by zero” occurs when evaluating In(+0) = —oco. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { logb((fp expr)) }

Determines the exponent of the (fp ezpr), namely the floor of the base-10 logarithm of
its absolute value. “Division by zero” occurs when evaluating logh(+£0) = —oco. Other
special values are logh(400) = +00 and logb(nan) = nan. If the operand is a tuple or is
nan, then “invalid operation” occurs and the result is nan.

\fp_eval:n { max((fp expri) , (fp exprz) , ...) %}
\fp_eval:n { min((fp expri) , (fp expra) , ...) }

Evaluates each (fp ezpr) and computes the largest (smallest) of those. If any of the (fp
expr) is a nan or tuple, the result is nan. If any operand is a tuple, “invalid operation”
occurs; these operations do not raise exceptions in other cases.

261

round
trunc
ceil

floor

New: 2013-12-14
Updated: 2015-08-08

sign

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

\fp_eval:n { round ((fp expr)) }

\fp_eval:n { round ((fp expri) , (fp exprs)) }

\fp_eval:n { round ((fp expri) , (fp exprz) , (fp exprs)) }

Only round accepts a third argument. Evaluates (fp expr) = x and (fp expry) = n and
(fp exprs) =t then rounds x to n places. If n is an integer, this rounds z to a multiple
of 10™™; if n = 400, this always yields x; if n = —oo, this yields one of +0, +00, or nan;
if n = nan, this yields nan; if n is neither +00 nor an integer, then an “invalid operation”
exception is raised. When (fp exprs) is omitted, n = 0, i.e., {fp expri) is rounded to an
integer. The rounding direction depends on the function.

o round yields the multiple of 10~ closest to x, with ties (z half-way between two
such multiples) rounded as follows. If ¢ is nan (or not given) the even multiple is
chosen (“ties to even”), if ¢ = 0 the multiple closest to 0 is chosen (“ties to zero”),
if ¢ is positive/negative the multiple closest to co/—oo is chosen (“ties towards
positive/negative infinity”).

e floor yields the largest multiple of 107" smaller or equal to x (“round towards
negative infinity”);
e ceil yields the smallest multiple of 10" greater or equal to (“round towards

positive infinity”);

e trunc yields a multiple of 107" with the same sign as =z and with the largest
absolute value less than that of z (“round towards zero”).

“Overflow” occurs if x is finite and the result is infinite (this can only happen if
(fp expra) < —9984). If any operand is a tuple, “invalid operation” occurs.

\fp_eval:n { sign((fp expr)) }

Evaluates the (fp expr) and determines its sign: 41 for positive numbers and for 400, —1
for negative numbers and for —oo, +0 for 40, and nan for nan. If the operand is a tuple,
“invalid operation” occurs. This operation does not raise exceptions in other cases.

\fp_eval:n { sin((fp expr)) }
\fp_eval:n { cos((fp expr)) }
\fp_eval:n { tan((fp expr)) }
\fp_eval:n { cot((fp expr)) }
\fp_eval:n { csc((fp expr)) }
\fp_eval:n { sec((fp expr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fp expr) given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

262

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

asin
acos
acsc
asec

New: 2013-11-02

asind
acosd
acscd
asecd

New: 2013-11-02

\fp_eval:n { sind((fp expr)) }
\fp_eval:n { cosd((fp expr)) }
\fp_eval:n { tand((fp expr)) }
\fp_eval:n { cotd((fp expr)) }
\fp_eval:n { cscd((fp expr)) }
\fp_eval:n { secd((fp expr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fp expr) given
in degrees. For arguments given in radians, see sin, cos, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

asin(
acos(
acsc(
asec((fp

\fp_eval:n {
\fp_eval:n {
\fp_eval:n {
\fp_eval:n {

(fp
(fp
(fp

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fp expr) and returns
the result in radians, in the range [—7/2,7/2] for asin and acsc and [0, 7] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [—1, 1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { asind((fp expr)) }
\fp_eval:n { acosd((fp expr)) }
\fp_eval:n { acscd((fp expr)) %}
\fp_eval:n { asecd((fp expr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fp expr) and returns
the result in degrees, in the range [—90,90] for asin and acsc and [0, 180] for acos and
asec. For a result in radians, use asin, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

263

atan
acot

New: 2013-11-02

atand
acotd

New: 2013-11-02

sqrt

New: 2013-12-14

\fp_eval:n { atan((fp expr)) }
\fp_eval:n { atan((fp expri) , (fp exprz)) }
\fp_eval:n { acot((fp expr)) }
\fp_eval:n { acot((fp expri) , (fp expr2)) }

Those functions yield an angle in radians: atand and acotd are their analogs in de-
grees. The one-argument versions compute the arctangent or arccotangent of the
(fp expr): arctangent takes values in the range [—m/2,7/2], and arccotangent in the
range [0,7]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates ((fp exprs), (fp expri)): this is the arctangent of
(fp expr)/(fp expra), possibly shifted by m depending on the signs of (fp expr;) and {fp
expry). The two-argument arccotangent computes the angle in polar coordinates of the
point ({fp expri), (fp exprs)), equal to the arccotangent of (fp expr)/(fp expre), possibly
shifted by 7. Both two-argument functions take values in the wider range [—7, w]. The ra-
tio (fp expr1)/{fp exprs) need not be defined for the two-argument arctangent: when both
expressions yield +0, or when both yield £oo, the resulting angle is one of {£x/4, £37/4}
depending on signs. The “underflow” exception can occur. If any operand is a tuple,
“invalid operation” occurs.

\fp_eval:n { atand((fp expr)) }
\fp_eval:n { atand((fp expri) , (fp exprz)) }
\fp_eval:n { acotd((fp expr)) }
\fp_eval:n { acotd((fp expri) , (fp expra2)) }

Those functions yield an angle in degrees: atand and acotd are their analogs in ra-
dians. The one-argument versions compute the arctangent or arccotangent of the {(fp
expr): arctangent takes values in the range [—90,90], and arccotangent in the range
[0,180]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates ((fp exprs), (fp expri)): this is the arctangent of
(fp expr1)/{fp exprs), possibly shifted by 180 depending on the signs of (fp expri) and (fp
expre). The two-argument arccotangent computes the angle in polar coordinates of the
point ({fp expry), {fp exprs)), equal to the arccotangent of {fp expri)/(fp exprs), possibly
shifted by 180. Both two-argument functions take values in the wider range [—180, 180].
The ratio (fp expri)/{fp expra) need not be defined for the two-argument arctangent:
when both expressions yield +0, or when both yield +o0o, the resulting angle is one of
{+45,+135} depending on signs. The “underflow” exception can occur. If any operand
is a tuple, “invalid operation” occurs.

\fp_eval:n { sqrt((fp expr)) }

Computes the square root of the (fp expr). The “invalid operation” is raised when the
(fp expr) is negative or is a tuple; no other exception can occur. Special values yield

v—0= -0, v/+0 = 40, v/+00 = +00 and y/nan = nan.

264

rand

New: 2016-12-05

randint

New: 2016-12-05

\fp_eval:n { rand() }

Produces a pseudo-random floating-point number (multiple of 10716) between 0 included
and 1 excluded. This is not available in older versions of XgTEX. The random seed can
be queried using \sys_rand_seed: and set using \sys_gset_rand_seed:n.

TEXhackers note: This is based on pseudo-random numbers provided by the engine’s
primitive \pdfuniformdeviate in pdfTEX, pIEX, uplEX and \uniformdeviate in LuaTEX and
XATEX. The underlying code is based on Metapost, which follows an additive scheme recom-
mended in Section 3.6 of “The Art of Computer Programming, Volume 2.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying
stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be
relied upon for serious numerical computations nor cryptography.

\fp_eval:n { randint((fp expr)) %}
\fp_eval:n { randint((fp expri) , (fp expra)) }

Produces a pseudo-random integer between 1 and (fp expr) or between (fp expri) and (fp
expry) inclusive. The bounds must be integers in the range (—10'6,10'¢) and the first
must be smaller or equal to the second. See rand for important comments on how these
pseudo-random numbers are generated.

The special values +00, —o00, and nan are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_£fp).

The value of 7 (see \c_pi_fp).

The value of 1° in radians (see \c_one_degree_£p).

265

em
ex
in
pt
pc
cm

dd
cc
nd
nc
bp
sp

true
false

\fp_abs:n *

New: 2012-05-14
Updated: 2012-07-08

\fp_max:nn *
\fp_min:nn *

New: 2012-09-26

Those units of measurement are equal to their values in pt, namely

1in =72.27pt

lpt =1pt

lpc=12pt
L.

lem = opiin= 28.45275590551181 pt
1

1mm = 5 in = 2.845275590551181 pt

1dd = 0.376065 mm = 1.07000856496063 pt
lcc=12dd = 12.84010277952756 pt

1nd = 0.375mm = 1.066978346456693 pt
lnc = 12nd = 12.80374015748031 pt

L.
1bp = 7 in = 1.00375pt

1sp =270 pt = 1.52587890625 x 10° pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

Other names for 1 and +0.

\fp_abs:n {(fp expr)}

Evaluates the (fp expr) as described for \fp_eval:n and leaves the absolute value of the
result in the input stream. If the argument is 0o, nan or a tuple, “invalid operation”
occurs. Within floating point expressions, abs () can be used; it accepts 0o and nan as
arguments.

\fp_max:nn {(fp expression 1)} {(fp expression 2)}

Evaluates the (fp exprs) as described for \fp_eval:n and leaves the resulting larger (max)
or smaller (min) value in the input stream. If the argument is a tuple, “invalid operation”
occurs, but no other case raises exceptions. Within floating point expressions, max() and
min() can be used.

28.11 Disclaimer and roadmap

The package may break down if the escape character is among 0123456789_+, or if it
receives a TEX primitive conditional affected by \exp_not:N.
The following need to be done. I'll try to time-order the items.

o Function to count items in a tuple (and to determine if something is a tuple).

e Decide what exponent range to consider.

266

Support signalling nan.

Modulo and remainder, and rounding function quantize (and its friends analogous
to trunc, ceil, floor).

\fp_format:nn {(fp expr)} {(format)}, but what should (format) be? More gen-
eral pretty printing?

Add and, or, xor? Perhaps under the names all, any, and xor?

Add log(z,b) for logarithm of x in base b.

hypot (Euclidean length). Cartesian-to-polar transform.

Hyperbolic functions cosh, sinh, tanh.

Inverse hyperbolics.

Base conversion, input such as 0xAB.CDEF.

Factorial (not with !), gamma function.

Improve coefficients of the sin and tan series.

Treat upper and lower case letters identically in identifiers, and ignore underscores.
Add an array(1,2,3) and i=complex(0,1).

Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)?

Provide an isnan function analogue of \fp_if_nan:nTF?

Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs, and tests to add.
Check that functions are monotonic when they should.
Add exceptions to 7:, '<=>7 &&, ||, and !.
Logarithms of numbers very close to 1 are inaccurate.
When rounding towards —oo, \dim_to_fp:n {Opt} should return —0, not +0.
The result of (+0) + (+0), of z 4+ (—z), and of (—z) 4+ x should depend on the

rounding mode.
0€9999999999 gives a TEX “number too large” error.
Subnormals are not implemented.
Possible optimizations/improvements.
Document that 13trial /I3fp-types introduces tools for adding new types.

In subsection 28.10.1, write a grammar.

267

It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in I3fp-parse.

Some functions should get an _o ending to indicate that they expand after their
result.

More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

The code for the ternary set of functions is ugly.
There are many ~ missing in the doc to avoid bad line-breaks.

The algorithm for computing the logarithm of the significand could be made to use
a b terms Taylor series instead of 10 terms by taking ¢ = 2000/(|200x |+1) € [10,95]
instead of ¢ € [1,10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

Improve notations in the explanations of the division algorithm (13fp-basics).

Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to I3fp-aux under a better name.

Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. ..

Also take into account the “inexact” exception?

Support multi-character prefix operators (e.g., @/ or whatever)?

268

\fparray_new:Nn

New: 2018-05-05

\fparray_count:N *

New: 2018-05-05

\fparray_gset:Nnn

New: 2018-05-05

\fparray_gzero:N

New: 2018-05-05

\fparray_item:Nn *
\fparray_item_to_tl:Nn *

New: 2018-05-05

Chapter 29

The I13fparray package: Fast
global floating point arrays

29.1 I13fparray documentation

For applications requiring heavy use of floating points, this module provides arrays which
can be accessed in constant time (contrast 13seq, where access time is linear). The
interface is very close to that of I3intarray. The size of the array is fixed and must be
given at point of initialisation

\fparray_new:Nn (fparray var) {(size)}

Evaluates the integer expression (size) and allocates an (floating point array variable)
with that number of (zero) entries. The variable name should start with \g_ because
assignments are always global.

\fparray_count:N (fparray var)

Expands to the number of entries in the (floating point array variable). This is performed
in constant time.

\fparray_gset:Nnn (fparray var) {(position)} {(value)}

Stores the result of evaluating the floating point expression (value) into the (floating point
array variable) at the (integer expression) (position). If the (position) is not between 1
and the \fparray_count:N, an error occurs. Assignments are always global.

\fparray_gzero:N (fparray var)

Sets all entries of the (floating point array variable) to +0. Assignments are always global.

\fparray_item:Nn (fparray var) {(position)}

Applies \fp_use:N or \fp_to_t1:N (respectively) to the floating point entry stored at
the (integer expression) (position) in the (floating point array variable). If the (position)
is not between 1 and the \fparray_count:N, an error occurs.

269

Chapter 30

The 13cctab package
Category code tables

A category code table enables rapid switching of all category codes in one operation. For
LuaTgX, this is possible over the entire Unicode range. For other engines, only the 8-bit
range (0-255) is covered by such tables. The implementation of category code tables in
expl3 also saves and restores the TEX \endlinechar primitive value, meaning they could
be used for example to implement \ExplSyntaxOn.

30.1 Creating and initialising category code tables

\cctab_new:N \cctab_new:N (category code table)

\cctab_new:c
- Creates a new (category code table) variable or raises an error if the name is already

Updated: 2020-07-02 taken. The declaration is global. The (category code table) is initialised with the codes
as used by iniTEX.

\cctab_const:Nn \cctab_const:Nn (category code table) {(category code set up)}

\cctab_constich (v ates a new (category code table), applies (in a group) the (category code set up) on

Updated: 2020-07-07 top of iniTEX settings, then saves them globally as a constant table. The (category code
set up) can include a call to \cctab_select:N.

\cctab_gset:Nn \cctab_gset:Nn (category code table) {(category code set up)}

m Starting from the iniTEX category codes, applies (in a group) the (category code set up),

Updated: 2020-07-07 then saves them globally in the (category code table). The (category code set up) can
include a call to \cctab_select:N.

\cctab_gsave_current:N \cctab_gsave_current:N (category code table)

\cctab_gsave_current:c Saves the current prevailing category codes in the (category code table).

New: 2023-05-26

270

\cctab_begin:N
\cctab_begin:c

Updated: 2020-07-02

\cctab_end:

Updated: 2020-07-02

\cctab_select:N
\cctab_select:c

New: 2020-05-19
Updated: 2020-07-02

\cctab_item:Nn x
\cctab_item:cn *

New: 2021-05-10

\cctab_if_exist_p:N «*
\cctab_if_exist_p:c *
\cctab_if_exist:NTF =%
\cctab_if_exist:cTF %

\c_code_cctab

Updated: 2020-07-10

\c_document_cctab

Updated: 2020-07-08

30.2 Using category code tables

\cctab_begin:N (category code table)

Switches locally the category codes in force to those stored in the (category code table).
The prevailing codes before the function is called are added to a stack, for use with
\cctab_end:. This function does not start a TEX group.

\cctab_end:

Ends the scope of a (category code table) started using \cctab_begin:N, returning the
codes to those in force before the matching \cctab_begin:N was used. This must be
used within the same TEX group (and at the same TEX group level) as the matching
\cctab_begin:N.

\cctab_select:N (category code table)

Selects the (category code table) for the scope of the current group. This is in particu-
lar useful in the (setup) arguments of \t1l_set_rescan:Nnn, \tl_rescan:nn, \cctab_-
const:Nn, and \cctab_gset:Nn.

\cctab_item:Nn (category code table) {(int expr)}

Determines the (character) with character code given by the (int expr) and expands to
its category code specified by the (category code table).

30.3 Category code table conditionals

\cctab_if_exist_p:N (category code table)
\cctab_if_exist:NTF (category code table) {(true code)} {(false code)}

Tests whether the (category code table) is currently defined. This does not check that the
(category code table) really is a category code table.

30.4 Constant and scratch category code tables

Category code table for the expl3 code environment; this does not include @, which is
retained as an “other” character. Sets the \endlinechar value to 32 (a space).

Category code table for a standard TEX document, as set by the IXTEX kernel. In
particular, the upper-half of the 8-bit range will be set to “active” with pdfTEX only.
No babel shorthands will be activated. Sets the \endlinechar value to 13 (normal line
ending).

271

\c_initex_cctab

Updated: 2020-07-02

\c_other_cctab

Updated: 2020-07-02

\c_str_cctab

Updated: 2020-07-02

\g_tmpa_cctab
\g_tmpb_cctab

New: 2023-05-26

Category code table as set up by iniTEX.

Category code table where all characters have category code 12 (other).

\endlinechar value to —1.

Sets the

Category code table where all characters have category code 12 (other) with the exception
of spaces, which have category code 10 (space). Sets the \endlinechar value to —1.

Scratch category code tables.

272

Part V
Text manipulation

273

Chapter 31

The 13unicode package:
Unicode support functions

This module provides Unicode-specific functions along with loading data from a range of
Unicode Consortium files. Most of the code here is internal, but there are a small set of
public functions. These work with Unicode (codepoints) and are designed to give useable
results with both Unicode-aware and 8-bit engines.

274

\codepoint_generate:nn * \codepoint_generate:nn {(codepoint)} {(catcode)?}

New: 2022-10-09 Gemnerates one or more character tokens representing the (codepoint). With Unicode
Updated: 2022-11-09 engines, exactly one character token will be generated, and this will have the (catcode)
specified as the second argument:

o 1 (begin group)
o 2 (end group)
3 (math toggle)
4 (alignment)
o 6 (parameter)
7 (math superscript)

(
(
(
(
(
(

o 8 (math subscript)

e 13

For 8-bit engines, between one and four character tokens will be produced: these will be
the bytes of the UTF-8 representation of the (codepoint). For all codepoints outside of
the classical ASCII range, the generated character tokens will be active (category code
13); for codepoints in the ASCII range, the given (catcode) will be used. To allow the
result of this function to be used inside a expansion context, the result is protected by
\exp_not:n.

TEXhackers note: Users of (u)pTEX note that these engines are treated as 8-bit in this
context. In particular, for upTEX, irrespective of the \kcatcode of the (codepoint), any value
outside the ASCII range will result in a series of active bytes being generated.

\codepoint_str_generate:n * \codepoint_str_generate:n {(codepoint)}

New: 2022-10-09

Generates one or more character tokens representing the (codepoint). With Unicode en-
gines, exactly one character token will be generated. For 8-bit engines, between one and
four character tokens will be produced: these will be the bytes of the UTF-8 represen-
tation of the (codepoint). All of the generated character tokens will be of category code
12, except any spaces (codepoint 32), which will be category code 10.

275

\codepoint_to_category:n x

New: 2023-06-19

\codepoint_to_nfd:n *

New: 2022-10-09

\codepoint_to_category:n {(codepoint)}

Expands to the Unicode general category identifier of the (codepoint). The general cat-
egory identifier is a string made up of two letter characters, the first uppercase and the
second lowercase. The uppercase letters divide codepoints into broader groups, which
are then refined by the lowercase letter. For example, codepoints representing letters all
have identifiers starting L, for example Lu (uppercase letter), Lt (titlecase letter), etc.
Full details are available in the documentation provided by the Unicode Consortium: see
https://www.unicode.org/reports/tri4/#General _Category_Values

\codepoint_to_nfd:n {(codepoint)}

Converts the (codepoint) to the Unicode Normalization Form Canonical Decomposition.
The generated character(s) will have the current category code as they would if typed in
directly for Unicode engines; for 8-bit engines, active characters are used for all codepoints
outside of the ASCII range.

276

https://www.unicode.org/reports/tr44/#General_Category_Values

Chapter 32

The 13text package: Text
processing

This module deals with manipulation of (formatted) text; such material is comprised of
a restricted set of token list content. The functions provided here concern conversion of
textual content for example in case changing, generation of bookmarks and extraction
to tags. All of the major functions operate by expansion. Begin-group and end-group
tokens in the (text) are normalized and become { and }, respectively.

32.1 Expanding text

\text_expand:n * \text_expand:n {(text)}

New: 2020-01-02 Takes user input (text) and expands the content. Protected commands (typically format-
Updated: 2023-06-09 ting) are left in place, and no processing takes place of math mode material (as delimited
by pairs given in \1_text_math_delims_tl or as the argument to commands listed in
\1_text_math_arg tl). Commands which are neither engine- nor ITEX protected are
expanded exhaustively. Any commands listed in \1_text_expand_exclude_tl are ex-
cluded from expansion, as are those in \1_text_case_exclude_arg_tl and \1_text_-

math_arg_t1.

\text_declare_expand_equivalent:Nn \text_declare_expand_equivalent:Nn (cmd) {(replacement)}
\text_declare_expand_equivalent:cn

New: 2020-01-22

Declares that the (replacement) tokens should be used whenever the (e¢md) (a single
token) is encountered. The (replacement) tokens should be expandable. A token can be
“replaced” by itself if the defined replacement wraps it in \exp_not:n, for example

\text_declare_expand_equivalent:Nn \’ { \exp_not:n { \’ } }

277

\text_lowercase:n *
\text_uppercase:n *
\text_titlecase:n
\text_titlecase_first:n
\text_lowercase:nn
\text_uppercase:nn
\text_titlecase:nn *
\text_titlecase_first:nn *

New: 2019-11-20
Updated: 2022-10-13

32.2 Case changing

\text_uppercase:n {(tokens)}
\text_uppercase:nn {(BCP-47)} {(tokens)}

* Takes user input (text) first applies \text_expand, then transforms the case of character

tokens as specified by the function name. The category code of letters are not changed

*
, by this process when Unicode engines are used; in 8-bit engines, case changed charters

in the ASCII range will have the current prevailing category code, while those outside of
it will be represented by active characters.

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded
informally as converting the first character of the (tokens) to uppercase and the rest to
lowercase. However, the process is more complex than this as there are some situations
where a single lowercase character maps to a special form, for example ij in Dutch which
becomes IJ. The titlecase_first variant does not attempt any case changing at all
after the first letter has been processed.

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the |13str module and discussion
there of \str_lowercase:n, \str_uppercase:n and \str_casefold:n.

Case changing does not take place within math mode material so for example

\text_uppercase:n { Some~text~$y = mx + c$~with~{Braces} }
becomes
SOME TEXT $y = mx + c$ WITH {BRACES}

The first mandatory argument of commands listed in \1_text_case_exclude_arg_-
t1 is excluded from case changing; the latter are entirely non-textual content (such as
labels).

The standard mappings here follow those defined by the Unicode Consortium in
UnicodeData.txt and SpecialCasing.txt. For pIEX, only the ASCII range is covered
as the engine treats input outside of this range as east Asian.

Locale-sensitive conversions are enabled using the (BCP-47) argument, and follow
Unicode Consortium guidelines. Currently, the locale strings recognized for special han-
dling are as follows.

o Armenian (hy and hy-x-yiwn) The setting hy maps the codepoint U+0587, the
ligature of letters ech and yiwn, to the codepoints for capital ech and vew when
uppercasing: this follows the spelling reform which is used in Armenia. The alter-
native hy-x-yiwn maps U+0587 to capital ech and yiwn on uppercasing (also the
output if Armenian is not selected at all).

o Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated
for these languages. The combining dot mark is removed when lowercasing I-dot
and introduced when upper casing i-dotless.

o German (de-x-eszett). An alternative mapping for German in which the lower-
case FEszett maps to a grofles Eszett. Since there is a T1 slot for the grofies Fszett in
T1, this tailoring is available with pdfTEX as well as in the Unicode TEX engines.

278

http://www.unicode.org

o Greek (el). Removes accents from Greek letters when uppercasing; titlecasing
leaves accents in place. A variant el-x-iota is available which converts the ypoge-
grammeni (subscript muted iota) to capital iota when uppercasing: the standard
version retains the subscript versions.

o Lithuanian (1t). The lowercase letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lowercasing of the
relevant uppercase letters both when input as single Unicode codepoints and when
using combining accents. The combining dot is removed when uppercasing in these
cases. Note that only the accents used in Lithuanian are covered: the behaviour of
other accents are not modified.

o Medieval Latin (1a-x-medieval). The characters u and V are interchanged on case
changing.

o Dutch (nl). Capitalisation of ij at the beginning of titlecased input produces IJ
rather than Ij. The output retains two separate letters, thus this transformation
is available using pdfTEX.

For titlecasing, note that there are two functions available. The function \text_-
titlecase:n applies (broadly) uppercasing to the first letter of the input, then lower-
casing to the remainder. In contrast, \text_titlecase_first:n only carries out the
uppercasing operation, and leaves the balance of the input unchanged. Determining
whether non-letter characters at the start of text should switch from upper- to lowercas-
ing is controllable. When \1_text_titlecase_check_letter_bool is true, characters
which are not letters (category code 11) are left unchanged and “skipped”: the first let-
ter is uppercased. (With 8-bit engines, this is extended to active characters which form
part of a multi-byte letter codepoint.) When \1_text_titlecase_check_letter_bool
is false, the first character is uppercased, and the rest lowercased, irrespective of the
nature of the character.

\text_declare_case_equivalent:Nn \text_declare_case_equivalent:Nn (cmd) {(replacement)}
\text_declare_case_equivalent:cn

New: 2022-07-04

Declares that the (replacement) tokens should be used whenever the (cmd) (a single
token) is encountered during case changing.

\text_declare_lowercase_mapping:nn \text_declare_lowercase_mapping:nn {(codeppoint)} {(replacement)}
\text_declare_lowercase_mapping:nnn \text_declare_lowercase_mapping:nnn {(BCP-47)} {(codeppoint)}
\text_declare_titlecase_mapping:nn {(replacement)}

\text_declare_titlecase_mapping:nnn

\text_declare_uppercase_mapping:nn

\text_declare_uppercase_mapping:nnn

New: 2023-04-11
Updated: 2023-04-20

Declares that the (replacement) tokens should be used when case mapping the (codepoint),
rather than the standard mapping given in the Unicode data files. The nnn version takes
a BCP-47 tag, which can be used to specify that the customisation only applies to that
locale.

279

\text_case_switch:nnnn * \text_case_switch:nnnn {(normal)} {(upper)} {(lower)} {(title)}

New: 2022-07-04 Context-sensitive function which will expand to one of the (normal), (upper), (lower)
or (title) tokens depending on the current case changing operation. Outside of case
changing, the (normal) tokens are produced. Within case changing, the appropriate
mapping tokens are inserted.

32.3 Removing formatting from text

\text_purify:n * \text_purify:n {(text)}

New: 2020-03-05 Takes user input (text) and expands as described for \text_expand:n, then removes all
Updated: 2020-05-14 functions from the resulting text. Math mode material (as delimited by pairs given
in \1_text_math_delims_tl or as the argument to commands listed in \1_text_-
math_arg_tl) is left contained in a pair of $ delimiters. Non-expandable functions
present in the (text) must either have a defined equivalent (see \text_declare_purify_-
equivalent:Nn) or will be removed from the result. Implicit tokens are converted to their

explicit equivalent.

\text_declare_purify_equivalent:Nn \text_declare_purify_equivalent:Nn (cmd) {(replacement)}
\text_declare_purify_equivalent:Nx

New: 2020-03-05

Declares that the (replacement) tokens should be used whenever the (emd) (a single
token) is encountered. The (replacement) tokens should be expandable.

32.4 Control variables

\1_text_math_arg_tl [ists commands present in the (text) where the argument of the command should be
treated as math mode material. The treatment here is similar to \1_text_math_-
delims_tl but for a command rather than paired delimiters.

\1_text_math_delims_tl [jists pairs of tokens which delimit (in-line) math mode content; such content may be
excluded from processing.

\1_text_case_exclude_arg_tl

Lists commands where the first mandatory argument is excluded from case changing.

\1_text_expand_exclude_tl Lists commands which are excluded from expansion. This protection includes everything
up to and including their first braced argument.

\1_text_titlecase_check_letter_bool

Controls how the start of titlecasing is handled: when true, the first letter in text is
considered. The standard setting is true.

280

\text_map_function:nN 5¢

New: 2022-08-04

\text_map_inline:nn

New: 2022-08-04

\text_map_break: W
\text_map_break:n

New: 2022-08-04

32.5 Mapping to graphemes

Grapheme splitting is implemented using the algorithm described in Unicode Standard
Annex #29. This includes support for extended grapheme clusters. Text starting with a
line feed or carriage return character will drop this due to standard TEX processing. At
present extended pictograms are not supported: these may be added in a future release.

\text_map_function:nN (text) {(function)}

Takes user input (text) and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the (function). Broadly a
grapheme is a “user perceived character”: the Unicode Consortium describe the decom-
position of input to graphemes in depth, and the approach used here implements that
algorithm. The (function) should accept one argument as (balanced text): this may be
comprise codepoints or may be a control sequence. With 8-bit engines, the codepoint(s)
themselves may of course be made up of multiple bytes: the mapping will pass the correct
codepoints independent of the engine in use. See also \text_map_inline:nn.

\text_map_inline:nn (text) {(inline function)}

Takes user input (text) and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the (inline function). Broadly
a grapheme is a “user perceived character”: the Unicode Consortium describe the decom-
position of input to graphemes in depth, and the approach used here implements that
algorithm. The (inline function) should consist of code which receives the grapheme as
(balanced text): this may be comprise codepoints or may be a control sequence. With
8-bit engines, the codepoint(s) themselves may of course be made up of multiple bytes:
the mapping will pass the correct codepoints independent of the engine in use. See also
\text_map_function:nN.

\text_map_break:
\text_map_break:n {({code)}

Used to terminate a \text_map_... function before all entries in the (text) have been
processed. This normally takes place within a conditional statement.

281

Part VI
Typesetting

282

\box_new:N

\box_new:c

\box_clear:N

\box_clear:c
\box_gclear:N

\box_gclear:c

Chapter 33

The I13box package
Boxes

Box variables contain typeset material that can be inserted on the page or in other
boxes. Their contents cannot be converted back to lists of tokens. There are three
kinds of box operations: horizontal mode denoted with prefix \hbox_, vertical mode
with prefix \vbox_, and the generic operations working in both modes with prefix \box_.
For instance, a new box variable containing the words “Hello, world!” (in a horizontal
box) can be obtained by the following code.

\box_new:N \1_hello_box
\hbox_set:Nn \1_hello_box { Hello, ~ world! }

The argument is typeset inside a TEX group so that any variables assigned during the
construction of this box restores its value afterwards.

Box variables from I3box are compatible with those of IXTEX 2¢ and plain TEX and
can be used interchangeably. The I3box commands to construct boxes, such as \hbox:n
or \hbox_set:Nn, are “color-safe”, meaning that

\hbox:n { \color_select:n { blue } Hello, } ~ world!

will result in “Hello,” taking the color blue, but “world!” remaining with the prevailing
color outside the box.

33.1 Creating and initialising boxes

\box_new:N (box)

Creates a new (boz) or raises an error if the name is already taken. The declaration is
global. The (boz) is initially void.

\box_clear:N (box)

Clears the content of the (boz) by setting the box equal to \c_empty_box.

283

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

\box_set_eq:NN
\box_set_eq:(cN|Nc|cc)
\box_gset_eq:NN
\box_gset_eq:(cN|Nc|cc)

\box_if_exist_p:N *
\box_if_exist_p:c *
\box_if_exist:NTF %
\box_if_ exist:cTF %

New: 2012-03-03

\box_use:N
\box_use:c

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn
\box_move_down:nn

\box_clear_new:N (box)

Ensures that the (boz) exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the (box) empty.

\box_set_eq:NN (boxi) (boxz)
Sets the content of (box;) equal to that of (boxz).

\box_if_exist_p:N (box)
\box_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (boz) is currently defined. This does not check that the (box) really is
a box.

33.2 Using boxes

\box_use:N (box)

Inserts the current content of the (boz) onto the current list for typesetting. An error is
raised if the variable does not exist or if it is invalid.

TEXhackers note: This is the TEX primitive \copy.

\box_move_right:nn {(dim expr)} {(box function)}

This function operates in vertical mode, and inserts the material specified by the (box
function) such that its reference point is displaced horizontally by the given (dim expr)
from the reference point for typesetting, to the right or left as appropriate. The (box
function) should be a box operation such as \box_use:N \<box> or a “raw” box specifi-
cation such as \vbox:n { xyz }.

\box_move_up:nn {(dim expr)} {(box function)}

This function operates in horizontal mode, and inserts the material specified by the (box
function) such that its reference point is displaced vertically by the given (dim expr)
from the reference point for typesetting, up or down as appropriate. The (boz function)
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

284

33.3 Measuring and setting box dimensions

\box_dp:N \box_dp:N (box)

\0ox_dP:C () culates the depth (below the baseline) of the (boz) in a form suitable for use in a (dim

expry.

TEXhackers note: This is the TEX primitive \dp.

\box_ht:N \box_ht:N (box)

APOXBEC (alculates the height (above the baseline) of the (boz) in a form suitable for use in a

(dim expr).

TEXhackers note: This is the TEX primitive \ht.

\box_wd:N \box_wd:N (box)

Apox VA€ o lculates the width of the (boz) in a form suitable for use in a {dim expr).

TEXhackers note: This is the TEX primitive \wd.

\box_ht_plus_dp:N \box_ht_plus_dp:N (box)
\box_ht_plus_dp:c

Calculates the total vertical size (height plus depth) of the (boz) in a form suitable for
New: 2021-05-05 use in a (dim expr).

\box_set_dp:Nn \box_set_dp:Nn (box) {(dim expr)}

\box_set_dpieR g, depth (below the baseline) of the (boz) to the value of the {(dim ezpr)}
\box_gset_dp:Nn ’
\box_gset_dp:cn

Updated: 2019-01-22

\box_set_ht:Nn \box_set_ht:Nn (box) {(dim expr)}

\box_set_ht:cn . P .
\box_gset_ht:Nn Set the height (above the baseline) of the (box) to the value of the {(dim expr)}.
\box_gset_ht:cn

Updated: 2019-01-22

\box_set_wd:Nn \box_set_wd:Nn (box) {(dim expr)}

\box_set_wd:cn . .
\box_gset_ud:Nn Set the width of the (boz) to the value of the {(dim expr)}.
\box_gset_wd:cn

Updated: 2019-01-22

285

\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:NTF
\box_if_empty:cIF

b R S S

\box_if_horizontal_p:N
\box_if_horizontal_p:c
\box_if_horizontal:NTF
\box_if_horizontal:cTF

\box_if_vertical_p:N
\box_if_vertical_p:c
\box_if_vertical:NTF
\box_if_vertical:cTF

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

\c_empty_box

Updated: 2012-11-04

\1_tmpa_box
\1_tmpb_box

Updated: 2012-11-04

\g_tmpa_box
\g_tmpb_box

33.4 Box conditionals

\box_if_empty_p:N (box)
\box_if_empty:NTF (box) {(true code)} {(false code)}

Tests if (box) is a empty (equal to \c_empty_box).

\box_if_horizontal_p:N (box)
\box_if_horizontal:NTF (box) {(true code)} {(false code)}

Tests if (bozx) is a horizontal box.

\box_if_vertical_p:N (box)
\box_if_vertical:NTF (box) {(true code)} {(false code)}

Tests if (bozx) is a vertical box.

33.5 The last box inserted

\box_set_to_last:N (box)

Sets the (boz) equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the (boz) is
always void as it is not possible to recover the last added item.

33.6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

TEXhackers note: At the TEX level this is a void box.

33.7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any KTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

286

\box_show:N
\box_show:c

Updated: 2012-05-11

\box_show:Nnn
\box_show:cnn

New: 2012-05-11

\box_log:N
\box_log:c

New: 2012-05-11

\box_log:Nnn
\box_log:cnn

New: 2012-05-11

\hbox:n

Updated: 2017-04-05

\hbox_to_wd:nn

Updated: 2017-04-05

\hbox_to_zero:n

Updated: 2017-04-05

\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

Updated: 2017-04-05

33.8 Viewing box contents

\box_show:N (box)
Shows full details of the content of the (boz) in the terminal.

\box_show:Nnn (box) {({int expri)} {(int exprs)}

Display the contents of (boz) in the terminal, showing the first (int expr;) items of the
box, and descending into (int expry) group levels.

\box_log:N (box)
Writes full details of the content of the (boz) to the log.

\box_log:Nnn (box) {(int expri)} {(int expr:)}

Writes the contents of (boz) to the log, showing the first (int expri) items of the box,
and descending into (int exprs) group levels.

33.9 Boxes and color
All IATEX3 boxes are “color safe”: a color set inside the box stops applying after the end

of the box has occurred.

33.10 Horizontal mode boxes

\hbox:n {({contents)}

Typesets the (contents) into a horizontal box of natural width and then includes this box
in the current list for typesetting.

\hbox_to_wd:nn {(dim expr)} {(contents)}

Typesets the (contents) into a horizontal box of width (dim expr) and then includes this
box in the current list for typesetting.

\hbox_to_zero:n {(contents)}

Typesets the (contents) into a horizontal box of zero width and then includes this box in
the current list for typesetting.

\hbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural width and then stores the result inside the (boz).

287

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Updated: 2017-04-05

\hbox_overlap_center:n

New: 2020-08-25

\hbox_overlap_right:n

Updated: 2017-04-05

\hbox_overlap_left:n

Updated: 2017-04-05

\hbox_set :Nw
\hbox_set:cw
\hbox_set_end:
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end:

Updated: 2017-04-05

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

New: 2017-06-08

\hbox_unpack:N
\hbox_unpack:c

\hbox_set_to_wd:Nnn (box) {(dim expr)} {(contents)}

Typesets the (contents) to the width given by the (dim expr) and then stores the result
inside the (boz).

\hbox_overlap_center:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material protrudes
equally to both sides of the insertion point.

\hbox_overlap_right:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material protrudes
to the right of the insertion point.

\hbox_overlap_left:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material protrudes
to the left of the insertion point.

\hbox_set:Nw (box) (contents) \hbox_set_end:

Typesets the (contents) at natural width and then stores the result inside the (boz). In
contrast to \hbox_set :Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple
argument.

\hbox_set_to_wd:Nnw (box) {(dim expr)} (contents) \hbox_set_end:

Typesets the (contents) to the width given by the (dim expr) and then stores the result
inside the (boz). In contrast to \hbox_set_to_wd:Nnn this function does not absorb the
argument when finding the (content), and so can be used in circumstances where the
(content) may not be a simple argument

\hbox_unpack:N (box)

Unpacks the content of the horizontal (bozx), retaining any stretching or shrinking applied
when the (boz) was set.

TEXhackers note: This is the TEX primitive \unhcopy.

33.11 Vertical mode boxes

Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box. This
means that the box has no depth unless the last item added to it had depth. As a result
most vertical boxes have a large height value and small or zero depth. The exception are

288

\vbox:n

Updated: 2017-04-05

\vbox_top:n

Updated: 2017-04-05

\vbox_to_ht:nn

Updated: 2017-04-05

\vbox_to_zero:n

Updated: 2017-04-05

\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Updated: 2017-04-05

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Updated: 2017-04-05

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Updated: 2017-04-05

\vbox_set:Nw
\vbox_set:cw
\vbox_set_end:
\vbox_gset:Nw
\vbox_gset:cw
\vbox_gset_end:

Updated: 2017-04-05

_top boxes, where the reference point is that of the first item added. These tend to have
a large depth and small height, although the latter is typically non-zero.

\vbox:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting.

\vbox_top:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting. The baseline of the box is equal to that of the first item
added to the box.

\vbox_to_ht:nn {(dim expr)} {(contents)}

Typesets the (contents) into a vertical box of height (dim exzpr) and then includes this
box in the current list for typesetting.

\vbox_to_zero:n {(contents)}

Typesets the (contents) into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (boz).

\vbox_set_top:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (boz). The
baseline of the box is equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn (box) {(dim expr)} {(contents)}

Typesets the (contents) to the height given by the (dim expr) and then stores the result
inside the (boz).

\vbox_set:Nw (box) (contents) \vbox_set_end:

Typesets the (contents) at natural height and then stores the result inside the (boz). In
contrast to \vbox_set :Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple
argument.

289

\vbox_set_to_ht:Nnw
\vbox_set_to_ht:cnw
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:cnw

New: 2017-06-08

\vbox_set_to_ht:Nnw (box) {(dim expr)} (contents) \vbox_set_end:

Typesets the (contents) to the height given by the (dim expr) and then stores the result
inside the (boz). In contrast to \vbox_set_to_ht:Nnn this function does not absorb the
argument when finding the (content), and so can be used in circumstances where the
(content) may not be a simple argument

\vbox_set_split_to_ht:NNn \vbox_set_split_to_ht:NNn (boxi) (boxs) {(dim expr)}
\vbox_set_split_to_ht:(cNn|Ncn|ccn)

\vbox_gset_split_to_ht:NNn

\vbox_gset_split_to_ht:(cNn|Ncn|ccn)

Updated: 2018-12-29

\vbox_unpack:N
\vbox_unpack:c

Sets (bozx1) to contain material to the height given by the (dim expr) by removing content
from the top of (boxz) (which must be a vertical box).

\vbox_unpack:N (box)

Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied
when the (boz) was set.

TEXhackers note: This is the TEX primitive \unvcopy.

33.12 Using boxes efficiently

The functions above for using box contents work in exactly the same way as for any other
expl3 variable. However, for efficiency reasons, it is also useful to have functions which
drop box contents on use. When a box is dropped, the box becomes empty at the group
level where the box was originally set rather than necessarily at the current group level.
For example, with

\hbox_set:Nn \1_tmpa_box { A }
\group_begin:
\hbox_set:Nn \1_tmpa_box { B }
\group_begin:
\box_use_drop:N \1_tmpa_box
\group_end:
\box_show:N \1_tmpa_box
\group_end:
\box_show:N \1_tmpa_box

the first use of \box_show:N will show an entirely cleared (void) box, and the second will
show the letter A in the box.

These functions should be preferred when the content of the box is no longer required
after use. Note that due to the unusual scoping behaviour of drop functions they may be
applied to both local and global boxes: the latter will naturally be set and thus cleared
at a global level.

290

\box_use_drop:N
\box_use_drop:c

\box_set_eq_drop:NN
\box_set_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\box_gset_eq_drop:NN
\box_gset_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\hbox_unpack_drop:N
\hbox_unpack_drop:c

New: 2019-01-17

\vbox_unpack_drop:N
\vbox_unpack_drop:c

New: 2019-01-17

\box_use_drop:N (box)

Inserts the current content of the (box) onto the current list for typesetting then drops
the box content. An error is raised if the variable does not exist or if it is invalid. This
function may be applied to local or global boxes.

TEXhackers note: This is the \box primitive.

\box_set_eq_drop:NN (box;) (boxz)

Sets the content of (box;) equal to that of (bozz), then drops (bozz).

\box_gset_eq_drop:NN (boxi) (boxz)
Sets the content of (box;) globally equal to that of (boxs), then drops (bozs).

\hbox_unpack_drop:N (box)
Unpacks the content of the horizontal (boz), retaining any stretching or shrinking applied
when the (boz) was set. The original (boz) is then dropped.

TEXhackers note: This is the TEX primitive \unhbox.

\vbox_unpack_drop:N (box)
Unpacks the content of the vertical (bozx), retaining any stretching or shrinking applied
when the (boz) was set. The original (boz) is then dropped.

TEXhackers note: This is the TEX primitive \unvbox.

33.13 Affine transformations

Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

291

\box_autosize_to_wd_and_ht:Nnn \box_autosize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}
\box_autosize_to_wd_and_ht:cnn

\box_gautosize_to_wd_
\box_gautosize_to_wd_

and_ht:Nnn
and_ht:cnn

New: 2017-04-04
Updated: 2019-01-22

Resizes the (boz) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the height only: it does not
include any depth. The updated (boz) is an hbox, irrespective of the nature of the (box)
before the resizing is applied. The final size of the (bozx) is the smaller of {(z-size)} and
{(y-size)}, i.e. the result fits within the dimensions specified. Negative sizes cause the
material in the (boz) to be reversed in direction, but the reference point of the (box) is
unchanged. Thus a negative (y-size) results in the (box) having a depth dependent on
the height of the original and wvice versa.

\box_autosize_to_wd_and_ht_plus_dp:Nnn \box_autosize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)}
\box_autosize_to_wd_and_ht_plus_dp:cnn {(y-size)}

\box_gautosize_to_wd_
\box_gautosize_to_wd_

and_ht_plus_dp:Nnn
and_ht_plus_dp:cnn

New: 2017-04-04
Updated: 2019-01-22

\box_resize_to_ht:Nn
\box_resize_to_ht:cn
\box_gresize_to_ht:Nn
\box_gresize_to_ht:cn

Updated: 2019-01-22

Resizes the (boz) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the total vertical size (height
plus depth). The updated (boz) is an hbox, irrespective of the nature of the (box)
before the resizing is applied. The final size of the (bozx) is the smaller of {(z-size)} and
{(y-size)}, i.e. the result fits within the dimensions specified. Negative sizes cause the
material in the (boz) to be reversed in direction, but the reference point of the (bozx) is
unchanged. Thus a negative (y-size) results in the (box) having a depth dependent on
the height of the original and wvice versa.

\box_resize_to_ht:Nn (box) {(y-size)}

Resizes the (box) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the height only: it does not include
any depth. The updated (boz) is an hbox, irrespective of the nature of the (box) before
the resizing is applied. A negative (y-size) causes the material in the (boz) to be reversed
in direction, but the reference point of the (boz) is unchanged. Thus a negative (y-size)
results in the (box) having a depth dependent on the height of the original and vice versa.

292

\box_resize_to_ht_plus_dp:Nn \box_resize_to_ht_plus_dp:Nn (box) {(y-size)}
\box_resize_to_ht_plus_dp:cn
\box_gresize_to_ht_plus_dp:Nn
\box_gresize_to_ht_plus_dp:cn

Updated: 2019-01-22

\box_resize_to_wd:Nn
\box_resize_to_wd:cn
\box_gresize_to_wd:Nn
\box_gresize_to_wd:cn

Updated: 2019-01-22

Resizes the (box) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the total vertical size (height plus
depth). The updated (boz) is an hbox, irrespective of the nature of the (boz) before the
resizing is applied. A negative (y-size) causes the material in the (boz) to be reversed
in direction, but the reference point of the (boz) is unchanged. Thus a negative (y-size)
results in the (box) having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd:Nn (box) {(x-size)}

Resizes the (box) to (z-size) (horizontally), scaling the vertical size by the same amount;
(2-size) is a dimension expression. The updated (boz) is an hbox, irrespective of the
nature of the (boz) before the resizing is applied. A negative (z-size) causes the material
in the (bozx) to be reversed in direction, but the reference point of the (boz) is unchanged.
Thus a negative (z-size) results in the (box) having a depth dependent on the height of
the original and vice versa.

\box_resize_to_wd_and_ht:Nnn \box_resize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}
\box_resize_to_wd_and_ht:cnn
\box_gresize_to_wd_and_ht:Nnn
\box_gresize_to_wd_and_ht:cnn

New:

Updated:

2014-07-03
2019-01-22

Resizes the (boz) to (x-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the height only and does not include any depth.
The updated (boz) is an hbox, irrespective of the nature of the (bozx) before the resizing
is applied. Negative sizes cause the material in the (boz) to be reversed in direction, but
the reference point of the (boz) is unchanged. Thus a negative (y-size) results in the
(boz) having a depth dependent on the height of the original and wvice versa.

\box_resize_to_wd_and_ht_plus_dp:Nnn \box_resize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)} {(y-size)}
\box_resize_to_wd_and_ht_plus_dp:cnn
\box_gresize_to_wd_and_ht_plus_dp:Nnn
\box_gresize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-06
Updated: 2019-01-22

Resizes the (boz) to (z-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the total vertical size (height plus depth). The
updated (bozx) is an hbox, irrespective of the nature of the (boz) before the resizing is
applied. Negative sizes cause the material in the (boz) to be reversed in direction, but
the reference point of the (boz) is unchanged. Thus a negative (y-size) results in the
(boz) having a depth dependent on the height of the original and wvice versa.

293

\box_rotate:Nn
\box_rotate:cn
\box_grotate:Nn
\box_grotate:cn

Updated: 2019-01-22

\box_scale:Nnn
\box_scale:cnn
\box_gscale:Nnn
\box_gscale:cnn

Updated: 2019-01-22

\box_set_clipped:N
\box_set_clipped:c
\box_gset_clipped:N
\box_gset_clipped:c

Updated: 2023-04-14

\box_set_trim:Nnnnn
\box_set_trim:cnnnn
\box_gset_trim:Nnnnn
\box_gset_trim:cnnnn

New: 2019-01-23

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn
\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn

New: 2019-01-23

\box_rotate:Nn (box) {(angle)}

Rotates the (boz) by (angle) (in degrees) anti-clockwise about its reference point. The
reference point of the updated box is moved horizontally such that it is at the left side
of the smallest rectangle enclosing the rotated material. The updated (boz) is an hbox,
irrespective of the nature of the (box) before the rotation is applied.

\box_scale:Nnn (box) {(x-scale)} {(y-scale)}

Scales the (boz) by factors (a-scale) and (y-scale) in the horizontal and vertical directions,
respectively (both scales are integer expressions). The updated (box) is an hbox, irre-
spective of the nature of the (boz) before the scaling is applied. Negative scalings cause
the material in the (bozx) to be reversed in direction, but the reference point of the (boz)
is unchanged. Thus a negative (y-scale) results in the (boz) having a depth dependent
on the height of the original and wice versa.

33.14 Viewing part of a box

\box_set_clipped:N (box)

Clips the (boz) in the output so that only material inside the bounding box is displayed
in the output. The updated (boz) is an hbox, irrespective of the nature of the (box)
before the clipping is applied. Additional box levels are also generated by this operation.

TEXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

\box_set_trim:Nnnnn (box) {(left)} {(bottom)} {(right)} {(top)}

Adjusts the bounding box of the (box) (left) is removed from the left-hand edge of the
bounding box, (right) from the right-hand edge and so fourth. All adjustments are (dim
exprs). Material outside of the bounding box is still displayed in the output unless \box_-
set_clipped:N is subsequently applied. The updated (bozx) is an hbox, irrespective of
the nature of the (box) before the trim operation is applied. Additional box levels are also
generated by this operation. The behavior of the operation where the trims requested is
greater than the size of the box is undefined.

\box_set_viewport:Nnnnn (box) {(11x)} {(11y)} {(urx)} {(ury)}

Adjusts the bounding box of the (box) such that it has lower-left co-ordinates ({llz),
(lly)) and upper-right co-ordinates ((urz), (ury)). All four co-ordinate positions are (dim
exprs). Material outside of the bounding box is still displayed in the output unless \box_-
set_clipped:N is subsequently applied. The updated (boz) is an hbox, irrespective of
the nature of the (boz) before the viewport operation is applied. Additional box levels
are also generated by this operation.

294

\if_hbox:N *

\if_vbox:N «*

\if _box_empty:N =

33.15 Primitive box conditionals

\if_hbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_vbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (box) is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_box_empty:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

295

Chapter 34

The 13coffins package
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the I13experimental bundle).

34.1 Creating and initialising coffins

\coffin_new:N \coffin_new:N (coffin)

\coffin_new:c . . . s
= """ Creates a new (coffin) or raises an error if the name is already taken. The declaration is

New: 2011-08-17 global. The (coffin) is initially empty.

\coffin_clear:N \coffin_clear:N (coffin)

\coffin_clear:c
\coffin_gclear:N Clears the content of the (coffin).

\coffin_gclear:c

New: 2011-08-17
Updated: 2019-01-21

\coffin_set_eq:NN \coffin_set_eq:NN (coffin;) (coffins)
\coffin_set_eq:(Nc|cN|cc)
\coffin_gset_eq:NN

\coffin_gset_eq:(Nc|cN|cc)

Sets both the content and poles of (coffin;) equal to those of (coffing).

New: 2011-08-17
Updated: 2019-01-21

\coffin_if_exist_p:N x \coffin_if_exist_p:N (coffin)
\coffin_if exist_p:c x \coffin_if_exist:NTF (coffin) {(true code)} {(false code)}

\COff}n-?f—ex}St:NE * Tests whether the (coffin) is currently defined.
\coffin_if exist:cTF %

New: 2012-06-20

296

\hcoffin_set:Nn
\hcoffin_set:cn
\hcoffin_gset:Nn
\hcoffin_gset:cn

New: 2011-08-17
Updated: 2019-01-21

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_set_end:
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_gset_end:

New: 2011-09-10
Updated: 2019-01-21

\vcoffin_set:Nnn
\vcoffin_set:cnn
\vcoffin_gset:Nnn
\vcoffin_gset:cnn

New: 2011-08-17
Updated: 2019-01-21

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
\vcoffin_gset_end:

New: 2011-09-10
Updated: 2019-01-21

34.2 Setting coffin content and poles

\hcoffin_set:Nn (coffin) {(material)}

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material.

\hcoffin_set:Nw (coffin) (material) \hcoffin_set_end:

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material. These
functions are useful for setting the entire contents of an environment in a coffin.

\vcoffin_set:Nnn (coffin) {(width)} {(material)}

Typesets the (material) in vertical mode constrained to the given (width) and stores the
result in the (coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material.

\vcoffin_set:Nnw (coffin) {(width)} (material) \vcoffin_set_end:

Typesets the (material) in vertical mode constrained to the given (width) and stores the
result in the (coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material. These functions are useful for setting the entire contents of
an environment in a coffin.

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:Nnn (coffin)
\coffin_set_horizontal_pole:cnn {(pole)} {(offset)}
\coffin_gset_horizontal_pole:Nnn

\coffin_gset_horizontal_pole:cnn

New: 2012-07-20
Updated: 2019-01-21

Sets the (pole) to run horizontally through the (coffin). The (pole) is placed at the {offset)
from the baseline of the (coffin). The (offset) should be given as a dimension expression.

297

\coffin_set_vertical_
\coffin_set_vertical_

pole:Nnn \coffin_set_vertical_pole:Nnn (coffin) {(pole)} {(offset)}
pole:cnn

\coffin_gset_vertical_pole:Nnn
\coffin_gset_vertical_pole:cnn

New: 2012-07-20
Updated: 2019-01-21

\coffin_reset_poles:N
\coffin_greset_poles:N

New: 2023-05-17

\coffin_resize:Nnn
\coffin resize:cnn
\coffin_gresize:Nnn
\coffin_gresize:cnn

Updated: 2019-01-23

\coffin_rotate:Nn
\coffin_rotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn

\coffin_scale:Nnn
\coffin scale:cnn
\coffin_gscale:Nnn
\coffin_gscale:cnn

Updated: 2019-01-23

Sets the (pole) to run vertically through the (coffin). The (pole) is placed at the {offset)
from the left-hand edge of the bounding box of the (coffin). The (offset) should be given
as a dimension expression.

\coffin_reset_poles:N (coffin)

Resets the poles of the (coffin) to the standard set, removing any custom or inherited
poles. The poles will therefore be equal to those that would be obtained from \hcoffin_-
set:Nn or similar; the bounding box of the coffin is not reset, so any material outside of
the formal bounding box will not influence the poles.

34.3 Coffin affine transformations

\coffin_resize:Nnn (coffin) {(width)} {(total-height)}
Resized the (coffin) to (width) and (total-height), both of which should be given as di-

mension expressions.

\coffin_rotate:Nn (coffin) {(angle)}

Rotates the (coffin) by the given (angle) (given in degrees counter-clockwise). This
process rotates both the coffin content and poles. Multiple rotations do not result in the
bounding box of the coffin growing unnecessarily.

\coffin_scale:Nnn (coffin) {(x-scale)} {(y-scale)}

Scales the (coffin) by a factors (z-scale) and (y-scale) in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

298

34.4 Joining and using coffins

\coffin_attach:NnnNnnnn \coffin_attach:NnnNnnnn
\coffin_attach:(cnnNnnnn|Nnncnnnn|cnncnnnn) (coffini) {{coffini-polei)} {({coffini-poles)}
\coffin_gattach:NnnNnnnn (coffing) {({coffiny-polei)} {(coffinp-poles)}

\coffin_gattach:(cnnNnnnn|Nnncnnnn|cnnennnn) — {(x-offset)} {(y-offset)}

Updated: 2019-01-22

This function attaches {(coffing) to (coffiny) such that the bounding box of (coffini)
is not altered, i.e. (coffiny) can protrude outside of the bounding box of the cof-
fin. The alignment is carried out by first calculating (handle;), the point of intersec-
tion of (coffini-pole;) and (coffini-poles), and (handley), the point of intersection of
(coffing-poler) and (coffing-poles). (coffing) is then attached to (coffini) such that the
relationship between (handle;) and (handles) is described by the (z-offset) and (y-offset).
The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn

\coffin_join:NnnNnnnn

\coffin_join:(cnnNnnnn|Nnncnnnn|cnncnnnn) (coffiny) {(coffin;-pole1)} {(coffini-poles)}
<

\coffin_gjoin:NnnNnnnn (coffing) {{coffins-polei)

(coffinp-poles)}

\coffin_gjoin:(cnnNnnnn|Nnncnnnn|cnncnnnn) {(x-offset)} {(y-offset)}

Updated: 2019-01-22

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Updated: 2012-07-20

\coffin_dp:N
\coffin_dp:c

This function joins (coffiny) to {coffini) such that the bounding box of (coffin;) may
expand. The new bounding box covers the area containing the bounding boxes of the
two original coffins. The alignment is carried out by first calculating (handle;), the
point of intersection of (coffini-pole;) and (coffini-poles), and (handles), the point of
intersection of (coffing-pole;) and (coffina-poles). {coffing) is then attached to (coffini)
such that the relationship between (handle;) and (handles) is described by the (z-offset)
and (y-offset). The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn (coffin) {(polei)} {(pole2)}
{(x-offset)} {(y-offset)}

Typesetting is carried out by first calculating (handle), the point of intersection of (pole;)
and (poles). The coffin is then typeset in horizontal mode such that the relationship be-
tween the current reference point in the document and the (handle) is described by the
(z-offset) and (y-offset). The two offsets should be given as dimension expressions. Type-
setting a coffin is therefore analogous to carrying out an alignment where the “parent”
coffin is the current insertion point.

34.5 Measuring coffins

\coffin_dp:N (coffin)

Calculates the depth (below the baseline) of the (coffin) in a form suitable for use in a
(dim expr).

299

\coffin_ht:N
\coffin_ht:c

\coffin_wd:N
\coffin_wd:c

\coffin_display_handles:Nn
\coffin_display_handles:cn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

Updated: 2011-09-02

\coffin_show_structure:N
\coffin_show_structure:c

Updated: 2015-08-01

\coffin_log_structure:N
\coffin_log_structure:c

New: 2014-08-22
Updated: 2015-08-01

\coffin_show:N
\coffin_show:c
\coffin_log:N
\coffin_log:c

New: 2021-05-11

\coffin_ht:N (coffin)

Calculates the height (above the baseline) of the (coffin) in a form suitable for use in a
(dim expr).

\coffin_wd:N (coffin)

Calculates the width of the (coffin) in a form suitable for use in a (dim expr).

34.6 Coffin diagnostics

\coffin_display_handles:Nn (coffin) {({color)}

This function first calculates the intersections between all of the (poles) of the (coffin) to
give a set of (handles). It then prints the (coffin) at the current location in the source,
with the position of the (handles) marked on the coffin. The (handles) are labelled as
part of this process: the locations of the (handles) and the labels are both printed in the
(color) specified.

\coffin_mark_handle:Nnnn (coffin) {(polei)} {(polez)} {(color)}

This function first calculates the (handle) for the (coffin) as defined by the intersection
of (poler) and (poley). Tt then marks the position of the (handle) on the (coffin). The
(handle) are labelled as part of this process: the location of the (handle) and the label
are both printed in the (color) specified.

\coffin_show_structure:N (coffin)

This function shows the structural information about the (coffin) in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y co-ordinates
of a point that the pole passes through and the z- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

\coffin_log_structure:N (coffin)

This function writes the structural information about the (coffin) in the log file. See also
\coffin_show_structure:N which displays the result in the terminal.

\coffin_show:N (coffin)
\coffin_log:N (coffin)

Shows full details of poles and contents of the (coffin) in the terminal or log file. See
\coffin_show_structure:N and \box_show:N to show separately the pole structure and
the contents.

300

\coffin_show:Nnn
\coffin_show:cnn
\coffin_log:Nnn
\coffin_log:cnn

New: 2021-05-11

\c_empty_coffin

\1_tmpa_coffin
\1_tmpb_coffin

New: 2012-06-19

\g_tmpa_coffin
\g_tmpb_coffin

New: 2019-01-24

\coffin_show:Nnn (coffin) {(int expr:)} {(int exprs)}

\coffin_log:Nnn (coffin) {(int expri)} {(int exprs)}

Shows poles and contents of the (coffin) in the terminal or log file, showing the first (int
expry) items in the coffin, and descending into (int exprs) group levels. See \coffin_-
show_structure:N and \box_show:Nnn to show separately the pole structure and the
contents.

34.7 Constants and variables

A permanently empty coffin.

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any I¥TX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch coffins for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

301

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

New: 2011-09-03

Chapter 35

The I13color package
Color support

35.1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:

\color_group_end:

Creates a color group: one used to “trap” color settings. This grouping is built in to for
example \hbox_set:Nn.

\color_ensure_current:

Ensures that material inside a box uses the foreground color at the point where the box
is set, rather than that in force when the box is used. This function should usually be
used within a \color_group_begin: ...\color_group_end: group.

35.2 Color models

A color model is a way to represent sets of colors. Different models are particularly
suitable for different output methods, e.g. screen or print. Parameter-based models can
describe a very large number of unique colors, and have a varying number of azes which
define a color space. In contrast, various proprietary models are available which define
spot colors (more formally separations).

Core models are used to pass color information to output; these are “native” to
[3color. Core models use real numbers in the range [0, 1] to represent values. The core
models supported here are

o gray Grayscale color, with a single axis running from 0 (fully black) to 1 (fully
white)

e rgb Red-green-blue color, with three axes, one for each of the components

302

cmyk Cyan-magenta-yellow-black color, with four axes, one for each of the compo-
nents

There are also interface models: these are convenient for users but have to be manipu-

lated before storing/passing to the backend. Interface models are primarily integer-based:
see below for more detail. The supported interface models are

Gray Grayscale color, with a single axis running from 0 (fully black) to 15 (fully
white)

hsb Hue-saturation-brightness color, with three axes,all real values in the range
[0, 1] for hue saturation and brightness

Hsb Hue-saturation-brightness color, with three axes, integer in the range [0, 360]
for hue, real values in the range [0, 1] for saturation and brightness

HSB Hue-saturation-brightness color, with three axes, integers in the range [0, 240]
for hue, saturation and brightness

HTML HTML format representation of RGB color given as a single six-digit hexadec-
imal number

RGB Red-green-blue color, with three axes, one for each of the components, values
as integers from 0 to 255

wave Light wavelength, a real number in the range 380 to 780 (nanometres)

All interface models are internally stored as rgb.

Finally, there are a small number of models which are parsed to allow data transfer

from xcolor but which should not be used by end-users. These are

cmy Cyan-magenta-yellow color with three axes, one for each of the components;
converted to cmyk

tHsb “Tuned” hue-saturation-brightness color with three axes, integer in the range
[0, 360] for hue, real values in the range [0, 1] for saturation and brightness; converted
to rgb using the standard tuning map defined by xcolor

&spot Spot color tint with one value; treated as a gray tint as spot color data is
not available for extraction

To allow parsing of data from xcolor, any leading model up the first : will be

discarded; the approach of selecting an internal form for data is not used in 13color.

Additional models may be created to allow mixing of separation colors with each

other or with those from other models. See Section 35.9 for more detail of color support
for additional models.

When color is selected by model, the (values) given are specified as a comma-

separated list. The length of the list will therefore be determined by the detail of the
model involved.

Color models (and interconversion) are complex, and more details are given in the

manual to the ITEX 2¢ xcolor package and in the PostScript Language Reference Manual,
published by Addison—Wesley.

303

35.3 Color expressions

In addition to allowing specification of color by model and values, 13color also supports
color expressions. These are created by combining one or more color names, with the
amount of each specified as a value in the range 0-100. The value should be given between
! symbols in the expression. Thus for example

red!50!green

is a mixture of 50 % red and 50 % green. A trailing value is interpreted as implicitly
followed by !'white, and so

red!25

specifies 25 % red mixed with 75 % white.
Where the models for the mixed colors are different, the model of the first color is
used. Thus

red!50!cyan

will result in a color specification using the rgb model, made up of 50 % red and 50 %
of cyan expressed in rgb. This may be important as color model interconversion is not
exact.

The one exception to the above is where the first model in an expression is gray. In
this case, the order of mixing is “swapped” internally, so that for example

black!50!red
has the same result as
red!50!black

(the predefined colors black and white use the gray model).
Where more than two colors are mixed in an expression, evaluation takes place in a
stepwise fashion. Thus in

cyan!50!magental!10!yellow

the sub-expression
cyan!50!'magenta

is first evaluated to give an intermediate color specification, before the second step
<intermediate>!10!yellow

where <intermediate> represents this transitory calculated value.
Within a color expression, . may be used to represent the color active for typesetting
(the current color). This allows for example

. 150

to mean a mixture of 50 % of current color with white.

(Color expressions supported here are a subset of those provided by the WTEX 2¢
xcolor package. At present, only such features as are clearly useful have been added
here.)

304

\color_set:nn

\color_set:nnn

\color_set_eq:nn

\color_if_exist_p:n *
\color_if_exist:nTF *

New: 2022-08-12

\color_show:n
\color_log:n

New: 2021-05-11

\color_select:n

\color_select:nn

\1_color_fixed_model_tl

35.4 Named colors

Color names are stored in a single namespace, which makes them accessible as part of
color expressions. Whilst they are not reserved in a technical sense, the names black,
white, red, green, blue, cyan, magenta and yellow have special meaning and should
not be redefined. Color names should be made up of letters, numbers and spaces only:
other characters are reserved for use in color expressions. In particular, . represents the
current color at the start of a color expression.

\color_set:nn {(name)} {(color expression)}

Evaluates the (color expression) and stores the resulting color specification as the (name).

\color_set:nnn {(name)} {(model(s))} {(value(s))}

Stores the color specification equivalent to the (model(s)) and (values) as the (name).

\color_set_eq:nn {(name1)} {(name2)}

Copies the color specification in (name2) to (namel). The special name . may be used
to represent the current color, allowing it to be saved to a name.

\color_if_exist_p:n {(name)}
\color_if_exist:nTF {(name)} {(true code)} {(false code)}

Tests whether (name) is currently defined to provide a color specification.

\color_show:n {(name)}
\color_log:n {(name)}

Displays the color specification stored in the (name) on the terminal or log file.

35.5 Selecting colors

General selection of color is safe when split across pages: a stack is used to ensure that
the correct color is re-selected on the new page.

These commands set the current color (.): other more specialised functions such as
fill and stroke selectors do not adjust this value.

\color_select:n {({color expression)}

Parses the (color expression) and then activates the resulting color specification for type-
set material.

\color_select:nn {(model(s))} {(value(s))}

Activates the color specification equivalent to the (model(s)) and (value(s)) for typeset
material.

When this is set to a non-empty value, colors will be converted to the specified model
when they are selected. Note that included images and similar are not influenced by this
setting.

305

\color_fill:n
\color_stroke:n

\color_fill:nn
\color_stroke:nn

color.sc

\color_math:nn
\color_math:nnn

New: 2022-01-26

\1l_color_math_active_tl

New: 2022-01-26

35.6 Colors for fills and strokes

Colors for drawing operations and so forth are split into strokes and fills (the latter may
also be referred to as non-stroke color). The fill color is used for text under normal
circumstances. Depending on the backend, stroke color may use a stack, in which case
it exhibits the same page breaking behavior as general color. However, dvips/dvisvgm
do not support this, and so color will need to be contained within a scope, such as
\draw_begin:/\draw_end:.

\color_fill:n {(color expression)}

Parses the (color expression) and then activates the resulting color specification for filling
or stroking.

\color_fill:nn {(model(s))} {(value(s))}

Activates the color specification equivalent to the (model(s)) and (value(s)) for filling or
stroking.

When using dvips, this PostScript variables hold the stroke color.

35.6.1 Coloring math mode material

Coloring math mode material using \color_select:nn(n) has some restrictions and
often leads to spacing issues and/or poor input syntax. Avoiding generating \mathord
atoms whilst coloring only those parts of the input which are required needs careful
handling. The functionality here covers this important use case.

\color_math:nn {(color expression)}{(content)}
\color_math:nnn {(model(s))} {(value(s))} {(content)}

Works as for \color_select:n(n) but applies color only to the math mode (content).
The function does not generate a group and the (content) therefore retains its math atom
states. Sub/superscripts are also properly handled.

This list controls which tokens are considered as math active and should therefore be
replaced by their definition during searching for sub/superscripts.

35.7 Multiple color models

When selecting or setting a color with an explicit model, it is possible to give values for
more than one model at one time. This is particularly useful where automated conversion
between models does not give the desired outcome. To do this, the list of models and list
of values are both subdivided using / characters (as for the similar function in xcolor).
For example, to save a color with explicit cmyk and rgb values, one could use

\color_set:nnn { foo } { cmyk / rgb }
{0.1,0.2,0.3,0.4/0.1, 0.2, 0.3%}

306

The manually-specified conversion will be used in preference to automated calculation
whenever the model(s) listed are used: both in expressions and when a fixed model is
active.

Similarly, the same syntax can be applied to directly selecting a color.

\color_select:nn { cmyk / rgb }
{0.1,02,0.3,04/0.1, 0.2, 0.3}

Again, this list is used when a fixed model is active: the first entry is used unless there
is a fixed model matching one of the other entries.

35.8 Exporting color specifications

The major use of color expressions is in setting typesetting output, but there are other
places in which some form of color information is required. These may need data in a
different format or using a different model to the internal representation. Thus a set of
functions are available to export colors in different formats.

Valid export targets are

e backend Two brace groups: the first containing the model, the second containing
space-separated values appropriate for the model; this is the format required by
backend functions of expl3

e comma-sep-cmyk Comma-separated cyan-magenta-yellow-black values

o comma-sep-rgb Comma-separated red-green-blue values suitable for use as a PDF
annotation color

e HTML Uppercase two-digit hexadecimal values, expressing a red-green-blue color;
the digits are not separated

e space-sep-cmyk Space-separated cyan-magenta-yellow-black values

e space-sep-rgb Space-separated red-green-blue values suitable for use as a PDF
annotation color

\color_export:nnN \color_export:nnN {(color expression)} {(format)} {(t1)}

Parses the (color expression) as described earlier, then converts to the (format) specified
and assigns the data to the (tl).

\color_export:nnnN \color_export:nnnN {(model)} {(value(s))} {(format)} {(t1)}

Expresses the combination of (model) and (value(s)) in an internal representation, then
converts to the (format) specified and assigns the data to the (tl).

307

\color_model_new:nnn

35.9 Creating new color models

Additional color models are required to support specialist workflows, for example those in-
volving separations (see https://helpx.adobe.com/indesign/using/spot-process-colors.
html for details of the use of separations in print). Color models may be split into fami-

lies; for the standard device-based color models (DeviceCMYK, DeviceRGB, DeviceGray),

these are synonymous. This is not generally the case: see the PDF reference for more
details. (Note that I13color uses the shorter names cmyk, etc.)

\color_model_new:nnn {(model)} {(family)} {(params)}

Creates a new (model) which is derived from the color model (family). The latter should
be one of

e DeviceN
e ICCBased
e Separation

(The (family) may be given in mixed case as-in the PDF reference: internally, case of
these strings is folded.) Depending on the (family), one or more (params) are mandatory
or optional.

For a Separation space, there are three compulsory keys.

e name The name of the Separation, for example the formal name of a spot color ink.
Such a (name) may contain spaces, etc., which are not permitted in the (model).

e alternative-model An alternative device colorspace, one of cmyk, rgb, gray or
CIELAB. The three parameter-based models work as described above; see below for
details of CIELAB colors.

e alternative-values A comma-separated list of values appropriate to the alternative-model.
This information is used by the PDF application if the Separation is not available.

CIELAB color separations are created using the alternative-model = CIELAB set-
ting. These colors must also have an illuminant key, one of a, c, e, d50, d55, d65 or
d75. The alternative-values in this case are the three parameters Lx, ax and bx of
the CIELAB model. Full details of this device-independent color approach are given in
the documentation to the colorspace package.

CIELAB colors cannot be converted into other device-dependent color spaces, and
as such, mixing can only occur if colors set up using the CIELAB model are also given
with an alternative parameter-based model. If that is not the case, 13color will fallback
to using black as the colorant in any mixing.

For a DeviceNl space, there is one compulsory key.

o names The names of the components of the DeviceN space. Each should be either
the (name) of a Separation model, a process color name (cyan, etc.) or the special
name none.

For a ICCBased space, there is one compulsory key.

e file The name of the file containing the profile.

308

https://helpx.adobe.com/indesign/using/spot-process-colors.html
https://helpx.adobe.com/indesign/using/spot-process-colors.html

35.9.1 Color profiles

Color profiles are used to ensure color accuracy by linking to collaboration. Applying a
profile can be used to standardise color which is otherwise device-dependence.

\color_profile_apply:nn \color_profile_apply:nn {(profile)} {(model)}

New: 2021-02-23 This function applies a (profile) to one of the device (models). The profile will then apply
to all color of the selected (model). The (profile) should specify an ICC profile file. The
(model) has to be one the standard device models: cmyk, gray or rgb.

309

Chapter 36

The 13pdf package
Core PDF support

36.1 Objects

\pdf_object_new:n \pdf_object_new:n {(object)}

New: 2022-08-23 Declares (object) as a PDF object. The object may be referenced from this point on, and
written later using \pdf_object_write:nnn.

\pdf_object_write:nnn \pdf_object_write:nn {(object)} {(type)} {(content)}

\pdf_object _write:mX wiiioq the (content) as content of the (object). Depending on the (type) declared for the

New: 2022-08-23 object, the format required for the (data) will vary

array A space-separated list of values
dict Key—value pairs in the form /{key) (value)
fstream Two brace groups: (file name) and (file content)

stream Two brace groups: (attributes (dictionary)) and (stream contents)

\pdf_object_ref:n * \pdf_object_ref:n {(object)}

New: 2021-02-10 Inserts the appropriate information to reference the (object) in for example page resource
allocation

310

\pdf_object_unnamed_write:nn \pdf_object_unnamed_write:nn {(type)} {(content)}
\pdf_object_unnamed_write:nx

New: 2021-02-10

Writes the (content) as content of an anonymous object. Depending on the (type), the
format required for the (data) will vary

array A space-separated list of values
dict Key-value pairs in the form /({key) (value)
fstream Two brace groups: (attributes (dictionary)) and (file name)

stream Two brace groups: (attributes (dictionary)) and (stream contents)

\pdf_object_ref_last: x \pdf_object_ref_last:

New: 2021-02-10 Inserts the appropriate information to reference the last (object) created. This is partic-
ularly useful for anonymous objects.

\pdf_pageobject_ref:n x \pdf_pagobject_ref:n {(pageobject)}

New: 2021-02-10 Inserts the appropriate information to reference the (pageobject).

\pdf_object_if_exist_p:n x \pdf_object_if_exist_p:n {(object)}
\pdf_object_if_exist:nTF x \pdf_object_if_exist:nTF {(object)}

New: 2020-05-15 Tests whether an object with name {(object)} has been defined.

36.2 Version

(version)}
(version)} {(true code)} {(false

\pdf_version_compare_p:Nn * \pdf_version_compare_p:Nn (comparator)
\pdf_version_compare:NnTF * \pdf_version_compare:NnTF (comparator)
code)’}

{
{

New: 2021-02-10

Compares the version of the PDF being created with the (version) string specified, using
the (comparator). Either the (true code) or (false code) will be left in the output stream.

\pdf_version_gset:n \pdf_version_gset:n {(version)}

\pdf_version min_gset:n Sets the (version) of the PDF being created. The min version will not alter the output

New: 2021-02-10 version unless it is currently lower than the (version) requested.

This function may only be used up to the point where the PDF file is initialised. With
dvips it sets \pdf_version_major: and \pdf_version_minor: and allows to compare
the values with \pdf_version_compare:Nn, but the PDF version itself still has to be set
with the command line option ~dCompatibilityLevel of ps2pdf.

\pdf_version: * \pdf_version:
\pdf_version_major: =%

. . Expands to the currently-active PDF version.
\pdf_version_minor: =

New: 2021-02-10

311

\pdf_pagesize_gset:nn

New: 2023-01-14

\pdf_uncompress:

New: 2021-02-10

36.3 Page (media) size

\pdf_pagesize_gset:nn {(width)} {(height)}

Sets the page size (mediabox) of the PDF being created to the (width) and (height), both
of which are (dimezxpr).

36.4 Compression

\pdf_uncompress:

Disables any compression of the PDF, where possible.
This function may only be used up to the point where the PDF file is initialised.

36.5 Destinations

Destinations are the places a link jumped too. Unlike the name may suggest they don’t
described an exact location in the PDF. Instead a destination contains a reference to a
page along with an instruction how to display this page. The normally used “XYZ top
left zoom” for example instructs the viewer to show the page with the given zoom and the
top left corner at the top left coordinates—which then gives the impression that there is
an anchor at this position.

If an instruction takes a coordinate, it is calculated by the following commands
relative to the location the command is issued. So to get a specific coordinate one has to
move the command to the right place.

312

\pdf_destination:nn \pdf_destination:nn {(name)} {(type or integer)}

New: 2021-01-03 This creates a destination. {(type or integer)} can be one of fit, fith, fitv, fitb,
fitbh, fitbv, fitr, xyz or an integer representing a scale factor in percent. fitr here
gives only a lightweight version of /FitR: The backend code defines fitr so that it will
with pdf¥TEX and Lual&TEX use the coordinates of the surrounding box, with dvips
and dvipdfmx it falls back to fit. For full control use \pdf_destination:nnnn.

The keywords match to the PDF names as described in the following tabular.

Keyword PDF Remarks

fit /Fit Fits the page to the window

fith /FitH top Fits the width of the page to the
window

fitv /FitV left Fits the height of the page to the
window

fitb /FitB Fits the page bounding box to the
window

fitbh /FitBH top Fits the width of the page bounding
box to the window.

fitbv /FitBV left Fits the height of the page bounding
box to the window.

fitr /FitR left bottom right top Fits the rectangle specified by the four

coordinates to the window (see above
for the restrictions)

Xyz /XYZ left top null Sets a coordinate but doesn’t change
the zoom.

{(integer)} /XYZ left top zoom Sets a coordinate and a zoom meaning
{(integer)}%.

\pdf_destination:nnnn \pdf_destination:nnnn {(name)} {(width)} {(height)} {(depth)}

New: 2021-01-17 This creates a destination with /FitR type with the given dimensions relative to the cur-
rent location. The destination is in a box of size zero, but it doesn’t switch to horizontal
mode.

313

36.6 Deprecated functions

\pdf_object_new:nn \pdf_object_new:nn {({object)} {(type)}

New: 2021-02-10 Declares (object) as a PDF object of (type), which should be one of

e array
e dict

e fstream
e stream

The object may be referenced from this point on, and written later using \pdf_object_-
write:nn.
Deprecated in favor of \pdf _object_new:n.

\pdf_object_write:nn \pdf_object_write:nn {(object)} {(content)}

\pdf_object Write:mX yyiias the (content) as content of the (object). Depending on the (type) declared for the

New: 2021-02-10 object, the format required for the (data) will vary

array A space-separated list of values
dict Key-value pairs in the form /({key) (value)
fstream Two brace groups: (file name) and (file content)
stream Two brace groups: (attributes (dictionary)) and (stream contents)

Deprecated in favor of \pdf_object_write:nnn.

314

Part VII
Additions and removals

315

Chapter 37

The I3candidates package
Experimental additions to

I3kernel

37.1 Important notice

This module provides a space in which functions can be added to |3kernel (expl3) while
still being experimental.

As such, the functions here may not remain in their current form,
or indeed at all, in I3kernel in the future.

In contrast to the material in |3experimental, the functions here are all small additions to
the kernel. We encourage programmers to test them out and report back on the LaTeX-L
mailing list.

Thus, if you intend to use any of these functions from the candidate module in a
public package offered to others for productive use (e.g., being placed on CTAN) please
consider the following points carefully:

e Be prepared that your public packages might require updating when such functions
are being finalized.

e Consider informing us that you use a particular function in your public package,
e.g., by discussing this on the LaTeX-L mailing list. This way it becomes easier to
coordinate any updates necessary without issues for the users of your package.

e Discussing and understanding use cases for a particular addition or concept also
helps to ensure that we provide the right interfaces in the final version so please
give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for
a final inclusion into the kernel. However, real use sometimes leads to better ideas, so
functions from this module are not necessarily stable and we may have to adjust them!

316

\seq_set_filter:NNn
\seq_gset_filter:NNn

\tl_build_begin:N
\t1l_build_gbegin:N

New: 2018-04-01

\tl_build_clear:N
\tl_build_gclear:N

New: 2018-04-01

\tl_build_put_left:Nn
\tl_build_put_left:Nx
\tl_build_gput_left:Nn
\tl_build_gput_left:Nx
\tl_build_put_right:Nn
\tl_build_put_right:Nx
\tl_build_gput_right:Nn
\tl_build_gput_right:Nx

New: 2018-04-01

\tl_build_get:NN

New: 2018-04-01

\tl_build_end:N
\tl_build_gend:N

New: 2018-04-01

37.2 Additions to 13seq

\seq_set_filter:NNn (sequence:) (sequences) {(inline boolexpr)}

Evaluates the (inline boolexpr) for every (item) stored within the (sequences). The (inline
boolezpr) receives the (item) as #1. The sequence of all (items) for which the (inline
boolexpr) evaluated to true is assigned to (sequencey).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

37.3 Additions to 13tl

\tl_build_begin:N (tl var)

Clears the (tl var) and sets it up to support other \t1_build_. .. functions, which allow
accumulating large numbers of tokens piece by piece much more efficiently than standard
13t functions. Until \t1_build_end:N (¢l var) is called, applying any function from I3tl
other than \t1_build_. .. will lead to incorrect results. The begin and gbegin functions
must be used for local and global (¢ var) respectively.

\tl_build_clear:N (tl1 var)

Clears the (#l var) and sets it up to support other \t1_build_. .. functions. The clear
and gclear functions must be used for local and global (¢ var) respectively.

\tl_build_put_left:Nn (tl var) {(tokens)}

\tl_build_put_right:Nn (t1 var) {(tokens)}

Adds (tokens) to the left or right side of the current contents of (¢ var). The (¢ var) must
have been set up with \t1_build_begin:N or \tl_build_gbegin:N. The put and gput
functions must be used for local and global (¢l var) respectively. The right functions
are about twice faster than the left functions.

\tl_build_get:NN (tl var;) (tl varp)

Stores the contents of the (tl vary) in the (¢l vary). The (¢ var;) must have been set up
with \t1_build_begin:N or \tl_build_gbegin:N. The (¢ vary) is a “normal” token
list variable, assigned locally using \t1_set:Nn.

\tl_build_end:N (tl var)

Gets the contents of (¢ war) and stores that into the (¢l var) using \tl_set:Nn or
\tl_gset:Nn. The (¢ var) must have been set up with \t1_build_begin:N or \tl_-
build_gbegin:N. The end and gend functions must be used for local and global (tl var)
respectively. These functions completely remove the setup code that enabled (¢l var) to
be used for other \t1_build_... functions.

317

Part VIII
Implementation

318

Chapter 38

I3bootstrap implementation

1 (xpackage)
> (@@=kernel)

38.1 The \pdfstrcmp primitive in XyqTEX

Only pdfTEX has a primitive called \pdfstrcmp. The XHIEX version is just \strcmp, so
there is some shuffling to do. As this is still a real primitive, using the pdfTEX name is
“safe”.

; \begingroup\expandafter\expandafter\expandafter\endgroup

+ \expandafter\ifx\csname pdfstrcmp\endcsname\relax

\let\pdfstrcmp\strcmp
6 \fi

38.2 Loading support Lua code

When LuaTgX is used there are various pieces of Lua code which need to be loaded. The
code itself is defined in I3luatex and is extracted into a separate file. Thus here the task
is to load the Lua code both now and (if required) at the start of each job.

7 \begingroup\expandafter\expandafter\expandafter\endgroup
¢ \expandafter\ifx\csname directlua\endcsname\relax

o \else
10 \ifnum\luatexversion<110 %
11 \else
For LuaTEX we make sure the basic support is loaded: this is only necessary in plain.
12 \begingroup\expandafter\expandafter\expandafter\endgroup
13 \expandafter\ifx\csname newcatcodetable\endcsname\relax
14 \input{ltluatex}/,
15 \fi

16 \begingroup\expandafter\expandafter\expandafter\endgroup
17 \expandafter\ifx\csname newluabytecode\endcsname\relax

18 \else

19 \newluabytecode\@expl@luadata@bytecode

20 \fi

21 \directlua{require("expl3")}%

319

As the user might be making a custom format, no assumption is made about matching
package mode with only loading the Lua code once. Instead, a query to Lua reveals what
mode is in operation.

22

\ifnum 0%

\directlua{
if status.ini_version then
tex.write("1")
end
}>0 %
\everyjob\expandafter{’
\the\expandafter\everyjob
\csname\detokenize{lua_now:n}\endcsname{require("expl3")}%

Yh

\fi

38.3 Engine requirements

The code currently requires e-TEX, the set of “pdfTEX extensions” including \expanded,
and for Unicode engines the ability to generate arbitrary character tokens by expansion.
That is covered by all supported engines since TEX Live 2019, which we therefore use as
a baseline for engine and ITEX format support. For LualgX, we require at least Lua
5.3 and the token.set_lua function. This is available at least since LualgX 1.10, which
again is the one in TEX Live 2019. (u)pTEX only gained \ifincsname for TEX Live 2020,
but at present that primitive is unused in expl3 so for the present it’s not tested. If and
when that changes, we will need to revisit the code here.

35

36

\begingroup
\def\next{\endgroupl}/
\def\ShortText{Required primitives not foundl}
\def\LongText%

The L3 programming layer requires the e-TeX primitives and the
\LineBreak ’pdfTeX utilities’ as described in the README file.
\LineBreak

These are available in the engines\LineBreak

- pdfTeX v1.40.20\LineBreak

- XeTeX v0.999991\LineBreak

- LuaTeX v1.10\LineBreak

- e-(u)pTeX v3.8.2\LineBreak

- Prote (2021)\LineBreak

or later.\LineBreak

\LineBreak

\ifnum0%
\expandafter\ifx\csname luatexversion\endcsname\relax

\expandafter\ifx\csname expanded\endcsname\relax\else 1\fi

\else

\ifnum\luatexversion<110 \else 1\fi

\fi
=0 %

\newlinechar‘\~"J %

320

60 \def\LineBreak{\noexpand\MessageBreak}/,
61 \expandafter\ifx\csname PackageError\endcsname\relax

62 \def\LineBreak{"~J}%

63 \begingroup

64 \lccode‘\~=‘\ \lccode‘\}=‘\ %
65 \lccode ‘\T=‘\T\1lccode ‘\H="‘\HY,
66 \catcode‘\ =11 Y%

7 \lowercase{\endgroup\def\PackageError#1#2#3{J,
¢s \begingroup\errorcontextlines-1\immediate\writeO{}\errhelp{#3}\def’,

o \ {#1 Error: #2.77J""J
70 Type H <return> for immediate help}\def~{\errmessage{’

71\ }}~\endgroup}}’
72 \fi

73 \edef\next

74 {%

75 \noexpand\PackageError{expl3}{\ShortText}

76 {\LongText Loading of expl3 will abort!}/

77 \endgroup

78 \noexpand\endinput

79 Y

80 \fi

a1 \next

38.4 The BTEX3 code environment

The code environment is now set up.

\ExplSyntax0ff Before changing any category codes, in package mode we need to save the situation before
loading. Note the set up here means that once applied \ExplSyntax0ff becomes a “do
nothing” command until \ExplSyntaxOn is used.

e \protected\edef\ExplSyntax0ff

83 {%

84 \protected\def\noexpand\ExplSyntax0ff{}%
85 \catcode 9 = \the\catcode 9\relax

86 \catcode 32 = \the\catcode 32\relax

87 \catcode 34 = \the\catcode 34\relax

88 \catcode 58 = \the\catcode b58\relax

89 \catcode 94 = \the\catcode 94\relax

90 \catcode 95 = \the\catcode 95\relax

01 \catcode 124 = \the\catcode 124\relax

9 \catcode 126 = \the\catcode 126\relax

03 \endlinechar = \the\endlinechar\relax

94 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = O\relax
s Yh

(End of definition for \ExplSyntax0ff. This function is documented on page 9.)
The code environment is now set up.

o6 \catcode 9 = 9\relax
o7 \catcode 32 = 9\relax
s \catcode 34 = 12\relax
99 \catcode 58 = 11\relax
100 \catcode 94 = T7\relax
101 \catcode 95 = 11\relax

321

102 \catcode 124 = 12\relax
103 \catcode 126 10\relax
104 \endlinechar = 32\relax

\1__kernel_expl_bool The status for code syntax: this is on at present.
105 \chardef\1__kernel_expl_bool = 1\relax

\ExplSyntax0On

(End of definition for \1__kernel_expl_bool.)

The idea here is that multiple \ExplSyntax0On calls are not going to mess up category
codes, and that multiple calls to \ExplSyntax0ff are also not wasting time. Applying
\ExplSyntaxOn alters the definition of \ExplSyntax0ff and so in package mode this
function should not be used until after the end of the loading process!

106 \protected \def \ExplSyntaxOn

107 {

108 \bool_if:NF \1__kernel_expl_bool

109 {

110 \cs_set_protected:Npx \ExplSyntax0ff

111 {

112 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
113 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
114 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
115 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
116 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
117 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
118 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
119 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
120 \tex_endlinechar:D =

121 \tex_the:D \tex_endlinechar:D \scan_stop:

122 \bool_set_false:N \1__kernel_expl_bool

123 \cs_set_protected:Npn \ExplSyntaxOff { }

124 3

125 }

126 \char_set_catcode_ignore:n {93} 7 tab

127 \char_set_catcode_ignore:n {32} 7 space

128 \char_set_catcode_other:n { 34 } 7 double quote

129 \char_set_catcode_letter:n {58 } Y% colon

130 \char_set_catcode_math_superscript:n { 94 } ¥ circumflex

131 \char_set_catcode_letter:n { 95 } Y% underscore

132 \char_set_catcode_other:n { 124 } 7 pipe

133 \char_set_catcode_space:n { 126 } % tilde

134 \tex_endlinechar:D = 32 \scan_stop:
135 \bool_set_true:N \1__kernel_expl_bool
136 }

(End of definition for \ExplSyntaxOn. This function is documented on page 9.)

1

7 (/package)

322

__kernel _primitive:NN

Chapter 39

I3names implementation

138 (*package & tex)

The prefix here is kernel. A few places need @@ to be left as is; this is obtained as
@Qa@a.

139 (@@=kerne1>

The code here simply renames all of the primitives to new, internal, names.

The \let primitive is renamed by hand first as it is essential for the entire process
to follow. This also uses \global, as that way we avoid leaving an unneeded csname in
the hash table.

140 \let \tex_global:D \global
11 \let \tex_let:D \let

Everything is inside a (rather long) group, which keeps __kernel_primitive:NN
trapped.
122 \begingroup
A temporary function to actually do the renaming.

143 \long \def __kernel_primitive:NN #1#2
144 { \tex_global:D \tex_let:D #2 #1 }

(End of definition for __kernel_primitive:NN.)
To allow extracting “just the names”, a bit of DocStrip fiddling.
s (/package & tex)
16 (*names | tex)
147 (xnames | package)

In the current incarnation of this package, all TEX primitives are given a new name
of the form \tex_oldname:D. But first three special cases which have symbolic original
names. These are given modified new names, so that they may be entered without
catcode tricks.

ue __kernel_primitive:NN \ \tex_space:D

10 __kernel_primitive:NN \/ \tex_italiccorrection:D

50 __kernel_primitive:NN \- \tex_hyphen:D

Now all the other primitives.

151 __kernel_primitive:NN \above \tex_above:D

152 __kernel_primitive:NN \abovedisplayshortskip \tex_abovedisplayshortskip:D
153 __kernel_primitive:NN \abovedisplayskip \tex_abovedisplayskip:D

152 __kernel_primitive:NN \abovewithdelims \tex_abovewithdelims:D

323

160

161

162

163

164

165

166

167

168

169

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

207

208

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
__ke